NOT MEASUREMENT SENSITIVE

MIL-HDBK-217F 2 DECEMBER 1991

SUPERSEDING MIL-HDBK-217E, Notice 1 2 January 1990

MILITARY HANDBOOK

RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

THIS HANDBOOK IS FOR GUIDANCE ONLY - DO NOT CITE THIS DOCUMENT AS A REQUIREMENT

AMSC N/A

FSC-RELI

DISTRIBUTION STATEMENT A: Approved for public release; distribution unlimited.

NOTICE OF CHANGE

NOT MEASUREMENT SENSITIVE

THIS HANDBOOK IS FOR GUIDANCE ONLY DO NOT CITE THIS DOCUMENT AS A REQUIREMENT

MIL-HDBK-217F NOTICE 2 28 February 1995

MILITARY HANDBOOK RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

To all holders of MIL-HDBK-217F

1. The following pages of MIL-HDBK-217F have been revised and supersede the pages listed.

New Page(s)	Date	Superseded Page(s)	Date
Front Cover		Front Cover	2 December 1991
iii	2 December 1991	iii	Reprinted without change
iv		iv	2 December 1991
٧		v	2 December 1991
vi		vi	2 December 1991
vii		vii	10 July 1992
viii		New Page	
1-1		1-1	2 December 1991
1-2		New Page	
2-1		2-1	2 December 1991
2-2		2-2	2 December 1991
2-3		2-3	2 December 1991
2-4		2-4	2 December 1991
2-5		2-5	2 December 1991
2-6		2-6	2 December 1991
2-7		New Page	
2-8		New Page	
5-3		5-3	10 July 1992
5-4	10 July 1992	5-4	Reprinted without change
5-5		5-5	2 December 1991
5-6		5-6	2 December 1991
5-9		5-9	10 July 1992
5-10	2 December 1991	5-10	Reprinted without change
5-23		5-23	2 December 1991
5-24		5-24	2 December 1991
6-1	2 December 1991	6-1	Reprinted without change
6-2		6-2	2 December 1991
7-3		7-3	2 December 1991
7-4	2 December 1991	7-4	Reprinted without change
9-1 through 9-3		9-1 through 9-29	2 December 1991
10-1 through 10-6		10-1 through 10-32	2 December 1991
11-1		11-1	2 December 1991
11-2		11-2	2 December 1991
11-3		11-3	2 December 1991
11-4		11-4, 11-5	2 December 1991
12-1		12-1	2 December 1991
12-2		12-2	2 December 1991

New Page(s)	Date	Superseded Page(s)	Date
12-3		12-3	10 July 1992
12-4		12-4	2 December 1991
12-5		12-5	2 December 1991
13-1		13-1	2 December 1991
13-2		13-2	2 December 1991
13-3		13-3	2 December 1991
14-1 through 14-2		14-1 through 14-4	2 December 1991
14-3		14-5	2 December 1991
15-1 through 15-3		15-1 through 15-6	2 December 1991
16-1		16-1	2 December 1991
16-2		New Page	
16-3		New Page	
16-4		New Page	
17-1		17-1	2 December 1991
Appendix A		A-1 through A-18	2 December 1991, 10 July 1992
C-3		C-3	2 December 1991
C-4		C-4	2 December 1991

- 2. Retain the pages of this notice and insert before the Table of Contents.
- 3. Holders of MIL-HDBK-217F will verify that page changes and additions indicated have been entered. The notice pages will be retained as a check sheet. The issuance, together with appended pages, is a separate publication. Each notice is to be retained by stocking points until the military handbook is revised or canceled.

Custodians:

Army - CR Navy - EC Air Force - 17 Preparing Activity: Air Force - 17

Project No. RELI-0074

Review Activities:

Army - MI, AV, ER Navy - SH, AS, OS Air Force - 11, 13, 15, 19, 99

Army - AT, ME, GL Navy - CG, MC, YD, TD Air Force - 85

AMSC N/A

<u>DISTRIBUTION STATEMENT A</u>: Approved for public release; distribution unlimited.

FSC RELI

NOTICE OF CHANGE

NOT MEASUREMENT SENSITIVE

> MIL-HDBK-217F NOTICE 1 10 JULY 1992

MILITARY HANDBOOK RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

To all holders of MIL-HDBK-217F

1. The following pages of MIL-HDBK-217F have been revised and supersede the pages listed.

New Page(s)	Date	Superseded Page(s)	Date
vii		. vii	2 December 1991
5-3		5-3	2 December 1991
5-4		5-4	2 December 1991
5-7	•	5-7	2 December 1991
5-8	2 December 1991	5-8	Reprinted without change
5-9		5- 9	2 December 1991
5-10	2 December 1991	5-10	Reprinted without change
5-11	2 December 1991	5-11	Reprinted without change
5-12		5-12	2 December 1991
5-13		5-13	2 December 1991
5-14	2 December 1991	5-14	Reprinted without change
5-19		5-19	2 December 1991
5-20	2 December 1991	5-20	Reprinted without change
6-15		6-15	2 December 1991
6-16	2 December 1991	6-16	Reprinted without change
7-1	2 December 1991	7-1	Reprinted without change
7-2		7-2	2 December 1991
12-3		12-3	2 December 1991
12-4	2 December 1991	12-4	Reprinted without change
A-1	2 December 1991	A-1	Reprinted without change
A-2		A-2	2 December 1991
A-3		A-3	2 December 1991
A-4	2 December 1991	A-4	Reprinted without change
A-5		A-5	2 December 1991
A-6		A-6	2 December 1991
A-7		A-7	2 December 1991
A-8		A-8	2 December 1991
A-9		A-9	2 December 1991
A-10	2 December 1991	A-10	Reprinted without change
A-11	2 December 1991	A-11	Reprinted without change
A-12		A-12	2 December 1991
A-13		A-13	2 December 1991
A-14		A-14	2 December 1991
A-15	2 December 1991	A-15	Reprinted without change
A-16		A-16	2 December 1991

AMSC N/A

<u>DISTRIBUTION STATEMENT A</u>: Approved for public release; distribution unlimited.

- 2. Retain the pages of this notice and insert before the Table of Contents.
- 3. Holders of MIL-HDBK-217F will verify that page changes and additions indicated have been entered. The notice pages will be retained as a check sheet. The issuance, together with appended pages, is a separate publication. Each notice is to be retained by stocking points until the military handbook is revised or canceled.

Custodians:

Army - CR Navy - EC Air Force - 17 Preparing Activity: Air Force - 17

Project No. RELI-0068

Review Activities:

Army - MI, AV, ER Navy - SH, AS, OS Air Force - 11, 13, 14, 15, 18, 19, 99

User Activities:

Army - AT, ME, GL Navy - CG, MC, YD, TD Air Force - 85

DEPARTMENT OF DEFENSE WASHINGTON DC 20301

RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

- 1. This standardization handbook was developed by the Department of Defense with the assistance of the military departments, federal agencies, and industry.
- 2. Every effort has been made to reflect the latest information on reliability prediction procedures. It is the intent to review this handbook periodically to ensure its completeness and currency.
- 3. Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Rome Laboratory/ERSR, Attn: Seymour F. Morris, 525 Brooks Rd., Griffiss AFB, NY 13441-4505, by using the self-addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

		TABLE OF CO	ONTENTS
SECTION 1.1		SCOPE pose	1-1
1.2			
1.3		plicationplicationnputerized Reliability Prediction	
1.5	COII	Tiputerized Heliability Frediction	171
SECTION	2:	REFERENCE DOCUMENTS	2-1
SECTION		INTRODUCTION	
3.1	Hell	iability Engineering	3-1
3.2		Role of Reliability Prediction	
3.3		sitations of Reliability Predictions	
3.4	Раπ	t Stress Analysis Prediction	3-2
SECTION	4:	RELIABILITY ANALYSIS EVALUATION	4-1
SECTION	5:	MICROCIRCUITS, INTRODUCTION	
5.1		te/Logic Arrays and Microprocessors	
5.2		mories	
5.3	VHS	SIC/VHSIC Like	5-7
5.4		As MMIC and Digital Devices	
5.5	Hyb	orids	5-9
5.6	SAV	W Devices	5-10
5.7	wag	gnetic Bubble Memories	5-11
5.8 5.9		Table for All	
5.10		π_{\parallel} and π_{\bigcirc} Tables for All	
	-	- 4	
5.11 5.12	•	Determination, (All Except Hybrids) Determination, (For Hybrids)	
	_		
5.13	Exa	amples	5-20
SECTION 6.0	6:	DISCRETE SEMICONDUCTORS crete Semiconductors, Introduction	6-1
6.1		des, Low Frequencydes, Low Frequency	
6.2	Dioc	des, High Frequency (Microwave, RF)	
6.3		nsistors, Low Frequency, Bipolar	
6.4	Tran	nsistors, Low Frequency, Si FET	
6.5	Tran	nsistors, Unijunction	6-9
6.6		nsistors, Low Noise, High Frequency, Bipolar	
6.7		nsistors, High Power, High Frequency, Bipolar	
6.8	Tran	nsistors, High Frequency, GaAs FET	6-14
6.9	Tran	nsistors, High Frequency, Si FET	6-16
6.10	Thy	ristors and SCRs	6-17
6.11	Opto	toelectronics, Detectors, Isolators, Emitters	6-19
6.12	Opt	toelectronics, Alphanumeric Displays	6-20
6.13	Opt	toelectronics, Laser Diode	6-21
6.14		Determination	
6.15	Exa	ample	6-25

TABLE OF CONTENTS

SECTION	7: TUBES	
7.1	All Types Except TWT and Magnetron	7-1
7.2	Traveling Wave	7-3
7.3	Magnetron	7-4
	3	
SECTION	8: LASERS	
8.0	Introduction	8-1
8.1	Helium and Argon	8-2
8.2	Carbon Dioxide, Sealed	8-3
8.3	Carbon Dioxide, Flowing	8-4
8.4	Solid State, ND:YAG and Ruby Rod	8-5
	· · · · · · · · · · · · · · · · · · ·	
SECTION	9: RESISTORS	
9.1	Resistors	9-1
SECTION	10: CAPACITORS	
10.1	Capacitors	10-1
10.2	Capacitors, Example	10-6
SECTION		
11.1	Transformers	11-1
11.2	Coils	11-3
11.3	Determination of Hot Spot Temperature	11-4
SECTION		
12.1	Motors	12-1
12.2	Synchros and Resolvers	12-4
12.3	Elapsed Time Meters	12-5
SECTION	13: RELAYS	
13.1	l 13: RELAYS Mechanical	13-1
13.1	Solid State and Time Delay	13-1
13.2	Solid State and Time Delay	13-3
SECTION	14: SWITCHES	
14.1	Switches	14-1
14.2	Circuit Breakers	14-2
17.2	Officult Disakers	17-2
SECTION	1 15: CONNECTORS	
15.1	Connectors, General	15-1
15.2	Connectors, Sockets	
SECTION	I 16: INTERCONNECTION ASSEMBLIES	
16.1	Interconnection Assemblies with Plated Through Holes	16-1
16.2	Interconnection Assemblies, Surface Mount Technology	16-2
	•	
SECTION		
17.1	Connections	17-1
SECTION		
18.1	Meters, Panel	18-1
0005101	10. QUARTT ORVOTALO	
SECTION		464
19.1	Quartz Crystals	19-1

		TABLE	OF	CONT	ENTS
SECTION 20.1	20: LAMPS Lamps				20-1
SECTION 21.1	21: ELECTRONIC FILTERS Electronic Filters, Non-Tunable				21-1
SECTION 22.1	22: FUSES Fuses				22-1
SECTION 23.1	23: MISCELLANEOUS PARTS Miscellaneous Parts				23-1
APPENDIX	A: PARTS COUNT RELIABILITY PREDICTION				A-1
APPENDIX	X B: VHSIC/VHSIC-LIKE AND VLSI CMOS (DETAILED	MODEL	.)		B-1
APPENDIX	C: BIBLIOGRAPHY		•••••		C-1
	LIST OF TABLES				
Table 3-1: Table 3-2: Table 4-1: Table 6-1: Table 6-2:	Parts with Multi-Level Quality Specifications			••••••	3-3 3-4 4-1 6-23
	LIST OF FIGURES				
Figure 5-1: Figure 8-1:		Substrate			5-18 8-1

FOREWORD

1.0 THIS HANDBOOK IS FOR GUIDANCE ONLY. THIS HANDBOOK SHALL NOT BE CITED AS A REQUIREMENT. IF IT IS, THE CONTRACTOR DOES NOT HAVE TO COMPLY.

MIL-HDBK-217F, Notice 2 provides the following changes based upon a recently completed study (see Ref. 37 listed in Appendix C):

- · Revised resistor and capacitor models, including new models to address chip devices.
- Updated failure rate models for transformers, coils, motors, relays, switches, circuit breakers, connectors, printed circuit boards (with and without surface mount technology) and connections.
- A new model to address surface mounted technology solder connections.
- A revised Traveling Wave Tube model based upon data supplied by the Electronic Industries Association Microwave Tube Division. This further lowers the calculated failure rates beyond the earlier modifications made in the base document (MIL-HDBK-217F, 2 December 1991).
- Revised the Fast Recovery Power Rectifier base failure rate downward based on a reevaluation of Ref. 28.
- 2.0 MIL-HDBK-217F, Notice 1, (10 July 1992) was issued to correct minor typographical errors in the basic F Revision.
- 3.0 MIL-HDBK-217F, (base document), (2 December 1991) provided the following changes based upon recently completed studies (see Ref. 30 and 32 listed in Appendix C):
 - New failure rate prediction models are provided for the following nine major classes of microcircuits:
 - Monolithic Bipolar Digital and Linear Gate/Logic Array Devices
 - Monolithic MOS Digital and Linear Gate/Logic Array Devices
 - Monolithic Bipolar and MOS Digital Microprocessor Devices (including Controllers)
 - Monolithic Bipolar and MOS Memory Devices
 - Monolithic GaAs Digital Devices
 - Monolithic GaAs MMIC Devices
 - Hybrid Microcircuits
 - Magnetic Bubble Memories
 - Surface Acoustic Wave Devices

The 2 December 1991 revision provided new prediction models for bipolar and MOS microcircuits with gate counts up to 60,000, linear microcircuits with up to 3000 transistors, bipolar and MOS digital microprocessor and co-processors up to 32 bits, memory devices with up to 1 million bits, GaAs monolithic microwave integrated circuits (MMICs) with up to 1,000 active elements, and GaAs digital ICs with up to 10,000 transistors. The C_1 factors have been extensively revised to reflect new technology devices with improved reliability, and the activation energies representing the temperature sensitivity of the dice (π_T) have been changed for MOS devices and for memories. The

FOREWORD

 C_2 factor remains unchanged from the previous Handbook version, but includes pin grid arrays and surface mount packages using the same model as hermetic, solder-sealed dual in-line packages. New values have been included for the quality factor (π_Q) , the learning factor (π_L) , and the environmental factor (π_E) . The model for hybrid microcircuits has been revised to be simpler to use, to delete the temperature dependence of the seal and interconnect failure rate contributions, and to provide a method of calculating chip junction temperatures.

- 2. A new model for Very High Speed Integrated Circuits (VHSIC/VHSIC Like) and Very Large Scale Integration (VLSI) devices (gate counts above 60,000).
- 3. The reformatting of the entire handbook to make it easier to use.
- 4. A reduction in the number of environmental factors (π_F) from 27 to 14.
- 5. A revised failure rate model for Network Resistors.
- 6. Revised models for TWTs and Klystrons based on data supplied by the Electronic Industries Association Microwave Tube Division.

1.0 SCOPE

- 1.1 Purpose This handbook is for guidance only and shall not be cited as a requirement. If it is, the contractor does not have to comply (see Page 1-2). The purpose of this handbook is to establish and maintain consistent and uniform methods for estimating the inherent reliability (i.e., the reliability of a mature design) of military electronic equipment and systems. It provides a common basis for reliability predictions during acquisition programs for military electronic systems and equipment. It also establishes a common basis for comparing and evaluating reliability predictions of related or competitive designs. The handbook is intended to be used as a tool to increase the reliability of the equipment being designed.
- 1.2 Application This handbook contains two methods of reliability prediction "Part Stress Analysis" in Sections 5 through 23 and "Parts Count" in Appendix A. These methods vary in degree of information needed to apply them. The Part Stress Analysis Method requires a greater amount of detailed information and is applicable during the later design phase when actual hardware and circuits are being designed. The Parts Count Method requires less information, generally part quantities, quality level, and the application environment. This method is applicable during the early design phase and during proposal formulation. In general, the Parts Count Method will usually result in a more conservative estimate (i.e., higher failure rate) of system reliability than the Parts Stress Method.

1.0 SCOPE

OFFICE OF THE ASSISTANT SECRETARY OF DEFENSE 3300 DEFENSE PENTAGON WASHINGTON, DC 20301-3300

RECONOMIC SECURITY

FEB 28 1995

COMMANDER, ROME LABORATORY (AFMC), ATTN: RL/ERSR, MR. S. MORRIS

SUBJECT: Notice 2 to MIL-HDBK-217F, "Reliability Prediction of Electronic Equipment", Project RELI-0074

Prior to sending the subject notice to the DoD Single Stock Point for printing and distribution, the following additions must be made:

- Across the cover in BIG BOLD BLACK LETTERS ALL CAPS: Insert "THIS HANDBOOK IS FOR GUIDANCE ONLY. DO NOT CITE THIS DOCUMENT AS A REQUIREMENT".
- In the FOREWORD (Page vii of Notice 2), paragraph 1.0: Add "THIS HANDBOOK IS FOR GUIDANCE ONLY. THIS HANDBOOK SHALL NOT BE CITED AS A REQUIREMENT. IF IT IS, THE CONTRACTOR DOES NOT HAVE TO COMPLY."
- Add an entry for the SCOPE, paragraph 1.1 (Purpose): "This
 handbook is for guidance only and shall not be cited as a
 requirement. If it is, the contractor does not have to
 comply."

If you have any questions regarding this request, please contact Ms. Carla Jenkins.

Walter B. Bergmann, I

Chairman,

Defense Standards Improvement

Council

cc: OUSD(A&T)DTSE&E/SE, Mr. M. Zsak

2.0 REFERENCE DOCUMENTS

This handbook cites some specifications which have been cancelled or which describe devices that are not to be used for new design. This information is necessary because some of these devices are used in so-called "off-the-shelf" equipment which the Department of Defense purchases. The documents cited in this section are for guidance and information.

SPECIFICATION	SECTION#	TITLE
MIL-C-5	10.1	Capacitors, Fixed, Mica Dielectric, General Specification for
MIL-R-11	9.1	Resistor, Fixed, Composition (Insulated), General Specification for
MIL-R-19	9.1	Resistor, Variable, Wirewound (Low Operating Temperature) General Specification for
MIL-C-20	10.1	Capacitor, Fixed, Ceramic Dielectric (Temperature Compensating), Established Reliability and Nonestablished Reliability, General Specification for
MIL-R-22	9.1	Resistor, Variable, Wirewound (Power Type), General Specification for
MIL-C-25	10.1	Capacitor, Fixed, Paper-Dielectric, Direct Current (Hermetically Sealed in Metal Cases), General Specification for
MIL-R-26	9.1	Resistor, Fixed, Wirewound (Power Type), General Specification for
MIL-T-27	11.1	Transformer and Inductors (Audio, Power, High Power Pulse), General Specification for
MIL-C-62	10.1	Capacitor, Fixed Electrolytic (DC, Aluminum, Dry Electrolyte, Polarized), General Specification for
MIL-C-81	10.1	Capacitor, Variable, Ceramic Dielectric, General Specification for
MIL-C-92	10.1	Capacitor, Variable, Air Dielectric (Trimmer), General Specification for
MIL-R-93	9.1	Resistor, Fixed, Wirewound (Accurate), General Specification for
MIL-R-94	9.14	Resistor, Variable, Composition, General Specification for
MIL-V-95	23.1	Vibrator, Interrupter and Self-Rectifying, General Specification for
W-L-111	20.1	Lamp, Incandescent Miniature, Tungsten Filament
W-C-375	14.5	Circuit Breaker, Molded Case, Branch Circuit and Service
W-F-1726	22.1	Fuse, Cartridge, Class H (this covers renewable and nonrenewable)
W-F-1814	22.1	Fuse, Cartridge, High Interrupting Capacity
MIL-C-3098	19.1	Crystal Unit, Quartz, General Specification for
MIL-C-3607	15.1	Connector, Coaxial, Radio Frequency, Series Pulse, General Specifications for
MIL-C-3643	15.1	Connector, Coaxial, Radio Frequency, Series HN and Associated Fittings, General Specification for

MiL-C-3650	15.1	Connector, Coaxial, Radio Frequency, Series LC
MIL-C-3655	15.1	Connector, Plug and Receptacle, Electrical (Coaxial Series Twin) and Associated Fittings, General Specification for
MIL-S-3786	14.3	Switch, Rotary (Circuit Selector, Low-Current (Capacity)), General Specification for
MIL-S-3950	14.1	Switch, Toggle, Environmentally Sealed, General Specification for
MIL-C-3965	10.1	Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte), Tantalum, General Specification for
MIL-C-5015	15.1	Connector, Electrical, Circular Threaded, AN Type, General Specification for
MIL-F-5372	22.1	Fuse, Current Limiter Type, Aircraft
MIL-S-5594	14.1	Switches, Toggle, Electrically Held Sealed, General Specification for
MIL-R-5757	13.1	Relays, Electromagnetic, General Specification for
MIL-R-6106	13.1	Relay, Electromagnetic (Including Established Reliability (ER) Types), General Specification for
MIL-L-6363	20.1	Lamp, Incandescent, Aircraft Service, General Specification for
MIL-S-8805	14.1, 14.2	Switches and Switch Assemblies, Sensitive and Push (Snap Action), General Specification for
MIL-S-8834	14.1	Switches, Toggle, Positive Break, General Specification for
MIL-S-8932	14.1	Switches, Pressure, Aircraft, General Specification for
MIL-S-9395	14.1	Switches, Pressure, (Absolute, Gage, and Differential), General Specification for
MIL-S-9419	14.1	Switch, Toggle, Momentary Four Position On, Center Off, General Specification for
MIL-M-10304	18.1	Meter, Electrical Indicating, Panel Type, Ruggedized, General Specification for
MIL-R-10509	9.1	Resistor, Fixed Film (High Reliability), General Specification for
MIL-C-10950	10.1	Capacitor, Fixed, Mica Dielectric, Button Style, General Specification for
MIL-C-11015	10.1	Capacitor, Fixed, Ceramic Dielectric (General Purpose), General Specification for
MIL-C-11272	10.1	Capacitor, Fixed, Glass Dielectric, General Specification for

MIL-C-11693	10.1	Capacitor, Feed Through, Radio Interference Reduction AC and DC, (Hermetically Sealed in Metal Cases) Established and Nonestablished Reliability, General Specification for
MIL-R-11804	9.1	Resistor, Fixed, Film (Power Type), General Specification for
MIL-S-12211	14.1	Switch, Pressure
MIL-S-12285	14.1	Switches, Thermostatic
MIL-S-12883	15.3	Sockets and Accessories for Plug-In Electronic Components, General Specification for
MIL-C-12889	10.1	Capacitor, By-Pass, Radio - Interference Reduction, Paper Dielectric, AC and DC, (Hermetically Sealed in Metallic Cases), General Specification for
MIL-R-12934	9.1	Resistor, Variable, Wirewound, Precision, General Specification for
MIL-S-13484	14.1	Switch, Sensitive: 30 Volts Direct Current Maximum, Waterproof
MIL-C-13516	14.2	Circuit Breakers, Manual and Automatic (28 Volts DC)
MIL-S-13623	14.1	Switches, Rotary: 28 Volt DC
MIL-R-13718	13.1	Relays, Electromagnetic 24 Volt DC
MIL-S-13735	14.1	Switches, Toggle: 28 Volt DC
MIL-C-14409	10.1	Capacitor, Variable (Piston Type, Tubular Trimmer), General Specification for
MIL-F-15160	22.1	Fuse, Instrument, Power and Telephone
MIL-S-15291	14.1	Switches, Rotary, Snap Action and Detent/Spring Return Action, General Specification for
MIL-C-15305	11.2	Coils, Electrical, Fixed and Variable, Radio Frequency, General Specification for
MIL-C-15370	15.1	Couplers, Directional, General Specification for
MIL-F-15733	21.1	Filters and Capacitors, Radio Frequency Interference, General Specification for
MIL-S-15743	14.1	Switches, Rotary, Enclosed
MIL-C-18312	10.1	Capacitor, Fixed, Metallized (Paper, Paper Plastic or Plastic Film) Dielectric, Direct Current (Hermetically Sealed in Metal Cases), General Specification for
MIL-F-18327	21.1	Filter, High Pass, Low Pass, Band Pass, Band Suppression and Dual Functioning, General Specification for

MIL-R-18546	9.1	Resistor, Fixed, Wirewound (Power Type, Chassis Mounted), General Specification for
MIL-S-19500	6.0	Semiconductor Device, General Specification for
MIL-R-19523	13.1	Relays, Control
MIL-R-19648	13.1	Relay, Time, Delay, Thermal, General Specification for
MIL-C-19978	10.1	Capacitor, Fixed Plastic (or Paper-Plastic) Dielectric (Hermetically Sealed in Metal, Ceramic or Glass Cases), Established and Nonestablished Reliability, General Specification for
MIL-T-21038	11.1	Transformer, Pulse, Low Power, General Specification for
MIL-C-21097	15.1	Connector, Electrical, Printed Wiring Board, General Purpose, General Specification for
MIL-S-21277	14.1	Switches, Liquid Level, General Specification for
MIL-C-21617	15.1	Connectors, Plug and Receptable - Electrical Rectangular, Polarized Shell, Miniature Type
MIL-R-22097	9.1	Resistor, Variable, Nonwirewound (Adjustment Types), General Specification for
MIL-S-22614	14.1	Switches, Sensitive
MIL-R-22684	9.2	Resistor, Fixed, Film, Insulated, General Specification for
MIL-S-22710	14.4	Switches, Code Indicating Wheel (Printed Circuit), (Thumbwheel, In-line and Pushbutton), General Specification for
MIL-S-22885	14.1	Switches, Pushbutton, Illuminated, General Specification for
MIL-C-22992	15.1	Connectors, Plugs and Receptacles, Electrical, Water-Proof, Quick Disconnect, Heavy Duty Type, General Specification for
MIL-C-23183	10.1	Capacitors, Fixed or Variable, Vacuum or Gas Dielectric, General Specification for
MIL-C-23269	10.1	Capacitor, Fixed, Glass Dielectric, Established Reliability, General Specification for
MIL-R-23285	9.1	Resistor, Variable, Nonwirewound, General Specification for
MIL-F-23419	22.1	Fuse, Cartridge, Instrument Type, General Specification for
MIL-T-23648	9.1	Resistor, Thermal, (Thermally Sensitive Resistor), Insulated, General Specification for
MS-24055	15.1	Connector, Plug-Receptacle, Electrical, Hexagonal, 9 Contacts, Female, 7.5 Amps
MS-24056	15.1	Connector, Plug-Receptacle, Electrical, Hexagonal, 9 Contacts, Male, 7.5 Amps

MIL-C-24308	15.1	Connectors, Electric, Rectangular, Nonenvironmental, Miniature, Polarized Shell, Rack and Panel, General Specification for
MIL-S-24317	14.1	Switches, Multistation, Pushbutton (Illuminated and Non-Illuminated), General Specification for
MIL-C-25516	15.1	Connector, Electrical, Miniature, Coaxial, Environment Resistant Type, General Specification for
MIL-C-26482	15.1	Connector, Electrical (Circular, Miniature, Quick Disconnect, Environment Resisting), Receptacles and Plugs, General Specification for
MIL- C-26500	15.1	Connectors, General Purpose, Electrical, Miniature, Circular, Environment Resisting, General Specification for
MIL-R-27208	9.1	Resistor, Variable, Wirewound, Nonprecision, General Specification for
MIL-C-28731	15.1	Connectors, Electrical, Rectangular, Removable Contact, Formed Blade, Fork Type (For Rack and Panel and Other Applications), General Specification for
MIL-C-28748	15.1	Connector, Plug and Receptacle, Rectangular, Rack and Panel, Solder Type and Crimp Type Contacts, General Specification for
MIL-R-28750	13.2	Relay, Solid State, General Specification for
MIL-C-28804	15.1	Connectors, Plug and Receptacle, Electric Rectangular, High Density, Polarized Center Jackscrew, General Specification for, Inactive for New Designs
MIL-C-28840	15.1	Connector, Electrical, Circular Threaded, High Density, High Shock Shipboard, Class D, General Specification for
MIL-M-38510	5.0	Microcircuits, General Specification for
MIL-S-38533	15.3	Sockets, Chip Carrier, Ceramic, General Specification for
MIL-H-38534	5.0	Hybrid Microcircuits, General Specification for
MIL-I-38535	5.0	Integrated Circuits (Microcircuits) Manufacturing, General Specification for
MIL-C-38999	15.1	Connector, Electrical, Circular, Miniature, High Density, Quick Disconnect, (Bayonet, Threaded, and Breech Coupling) Environment Resistant, Removable Crimp and Hermetic Solder Contacts, General Specification for
MIL-C-39001	10.1	Capacitor, Fixed, Mica-Dielectric, Established Reliability, General Specification for
MIL-R-39002	9.1	Resistor, Variable, Wirewound, Semi-Precision, General Specification for
MIL-C-39003	10.1	Capacitor, Fixed, Electrolytic, (Solid Electrolyte), Tantalum, Established Reliability, General Specification for

:	MIL-R-39005	9.1	Resistor, Fixed, Wirewound (Accurate), Established Reliability, General Specification for
	MIL-C-39006	10.1	Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte) Tantalum Established Reliability, General Specification for
	MIL-R-39007	9.1	Resistor, Fixed, Wirewound (Power Type), Established Reliability, General Specification for
	MIL-R-39008	9.1	Resistor, Fixed, Composition (Insulated), Established Reliability, General Specification for
	MIL-R-39009	9.1	Resistor, Fixed, Wirewound (Power Type, Chassis Mounted) Established Reliability, General Specification for
	MIL-C-39010	11.2	Coils, Electrical, Fixed, Radio Frequency, Molded, Established Reliability, General Specification for
	MIL-C-39012	15.1	Connector, Coaxial, Radio Frequency, General Specification for
	MIL-C-39014	10.1	Capacitor, Fixed, Ceramic Dielectric (General Purpose), Established Reliability, General Specification for
	MIL-R-39015	9.1	Resistor, Variable, Wirewound (Lead Screw Actuated), Established Reliability, General Specification for
	MIL-R-39016	13.1	Relay, Electromagnetic, Established Reliability, General Specification for
	MIL-R-39017	9.1	Resistor, Fixed, Film (Insulated), Established Reliability, General Specification for
	MIL-C-39018	10.1	Capacitor, Fixed, Electrolytic (Aluminum Oxide), Established Reliability and Nonestablished Reliability, General Specification for
	MIL-C-39019	14.5	Circuit Breakers, Magnetic, Low Power, Sealed, Trip-Free, General Specification for
	MIL-C-39022	10.1	Capacitors, Fixed, Metallized, Paper-Plastic Film or Plastic Film Dielectric, Direct and Alternating Current (Hermetically Sealed in Metal or Ceramic Cases), Established Reliability, General Specification for
	MIL-R-39023	9.1	Resistor, Variable, Nonwirewound, Precision, General Specification for
	MIL-R-39035	9.1	Resistor, Variable, Nonwirewound (Adjustment Type), Established Reliability, General Specification for
	MIL-S-45885	14.1	Switch, Rotary
	MIL-C-49142	15.1	Connectors, Plugs and Receptacle, Electrical Triaxial, Radio Frequency, General Specification for
	MIL-C-55074	15.1	Connectors, Plug and Receptacle, Telephone, Electrical, Subassembly and Accessories and Contact Assembly, Electrical, General Specification for
	MIL-P-55110	15.2	Printed Wiring Board, General Specification for
	MIL-R-55182	9.1	Resistor, Fixed, Film, Established Reliability, General Specification for

2.0 REFERENCE DOCUMENTS

MIL-C-55235	15.1	Connectors, Coaxial, Radio Frequency, Series TPS
MIL-C-55302	15.1	Connector, Printed Circuit, Subassembly and Accessories
MIL-A-55339	15.1	Adaptors, Connector, Coaxial, Radio Frequency, (Between Series and Within Series), General Specification for
MIL-R-55342	9.1	Resistors, Fixed, Film, Chip, Established Reliability, General Specification for
MIL-C-55365	10.1	Capacitor, Fixed, Electrolytic (Tantalum), Chip, Established Reliability, General Specification for
MIL-S-55433	14.1	Switches, Reed, General Specification for
MIL-C-55514	10.1	Capacitors, Fixed, Plastic (or Metallized Plastic) Dielectric, DC or DC-AC, In Non-Metal Cases, Established Reliability, General Specification for
MIL-C-55629	14.5	Circuit Breaker, Magnetic, Unsealed, or Panel Seal, Trip-Free, General Specification for
MIL-T-55631	11.1	Transformer, Intermediate Frequency, Radio Frequency and Discriminator, General Specification for
MIL-C-55681	10.1	Capacitor, Chip, Multiple Layer, Fixed, Unencapsulated Ceramic Dielectric, Established Reliability, General Specification for
MIL-C-81511	15.1	Connector, Electrical, Circular, High Density, Quick Disconnect, Environment Resisting and Accessories, General Specification for
MIL-S-81551	14.1	Switches; Toggle, Hermetically Sealed, General Specification for
MIL-C-81659	15.1	Connectors, Electrical Rectangular, Crimp Contact
MIL-S-82359	14.1	Switch, Rotary, Variable Resistor Assembly Type
MIL-C-83383	14.5	Circuit Breaker, Remote Control, Thermal, Trip-Free, General Specification for
MIL-R-83401	9.1	Resistor Networks, Fixed, Film and Capacitor-Resistor Networks, Ceramic Capacitors and Fixed Film Resistors, General Specification for
MIL-C-83421	10.1	Capacitors, Fixed Metallized Plastic Film Dielectric (DC, AC or DC and AC) Hermetically Sealed in Metal or Ceramic Cases, Established Reliability, General Specification for
MIL-C-83446	11.2	Coils, Radio Frequency, Chip, Fixed or Variable, General Specification for
MIL-C-83500	10.1	Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte), Tantalum Cathode, General Specification for
MIL-S-83504	14.1	Switches, Dual In-Line Package (DIP), General Specification for
MIL-C-83513	15.1	Connector, Electrical, Rectangular, Microminiature, Polarized Shell, General Specification for

New Page

2.0 REFERENCE DOCUMENTS

MIL-C-83515	15.1	Connectors, Telecommunication, Polarized Shell, General Specification for
MIL-R-83516	13.1	Relays, Reed, Dry, General Specification for
MIL-C-83517	15.1	Connectors, Coaxial, Radio Frequency for Coaxial, Strip or Microstrip Transmission Line, General Specification for
MIL-R-83520	13.1	Relays, Electromechanical, General Purpose, Non-Hermetically Sealed, Plastic Enclosure (Dust Cover), General Specification for
MIL-C-83527	15.1	Connectors, Plug and Receptacle, Electrical, Rectangular Multiple Insert Type, Rack to Panel, Environment Resisting, 150°C Total Continuous Operating Temperature, General Specification for
MIL-R-83536	13.1	Relays, Electromagnetic, Established Reliability, General Specification for
MIL-C-83723	15.1	Connector, Electrical (Circular Environment Resisting), Receptacles and Plugs, General Specification for
MIL-R-83725	13.1	Relay, Vacuum, General Specification for
MIL-R-83726	13.1, 13.2, 13.3	Relays, Hybrid and Solid State, Time Delay, General Specification for
MIL-S-83731	14.1	Switch, Toggle, Unsealed and Sealed Toggle, General Specification for
MIL-C-83733	15.1	Connector, Electrical, Miniature, Rectangular Type, Rack to Panel, Environment Resisting, 200°C Total Continuous Operating Temperature, General Specification for
MIL-S-83734	15.3	Sockets, Plug-In Electronic Components, Dual-In-Line (DIPS) and Single-In-Line Packages (SIPS), General Specification for
MIL-C-85028	15.1	Connector, Electrical, Rectangular, Individual Contact Sealing, Polarized Center Jackscrew, General Specification for
STANDARD		TITLE
MIL-STD-756		Reliability Modeling and Prediction
MIL-STD-883		Test Methods and Procedures for Microelectronics
MIL-STD-975		NASA Standard Electrical, Electronic and Electromechanical (EEE) Parts List
MIL-STD-1547		Electronic Parts, Materials and Processes for Space and Launch Vehicles, Technical Requirements for
MIL-STD-1772		Certification Requirements for Hybrid Microcircuit Facilities and Lines

Copies of specifications and standards required by contractors in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting officer. Single copies are also available (without charge) upon written request to:

Standardization Document Order Desk, 700 Robins Ave., Building 4, Section D, Philadelphia, PA 19111-5094, (215) 697-2667

3.0 INTRODUCTION

3.1 Reliability Engineering - Reliability is currently recognized as an essential need in military electronic systems. It is looked upon as a means for reducing costs from the factory, where rework of defective components adds a non-productive overhead expense, to the field, where repair costs include not only parts and labor but also transportation and storage. More importantly, reliability directly impacts force effectiveness, measured in terms of availability or sortie rates, and determines the size of the "logistics tail" inhibiting force utilization.

The achievement of reliability is the function of reliability engineering. Every aspect of an electronic system, from the purity of materials used in its component devices to the operator's interface, has an impact on reliability. Reliability engineering must, therefore, be applied throughout the system's development in a diligent and timely fashion, and integrated with other engineering disciplines.

A variety of reliability engineering tools have been developed. This handbook provides the models supporting a basic tool, reliability prediction.

3.2 The Role of Reliability Prediction - Reliability prediction provides the quantitative baseline needed to assess progress in reliability engineering. A prediction made of a proposed design may be used in several ways.

A characteristic of Computer Aided Design is the ability to rapidly generate alternative solutions to a particular problem. Reliability predictions for each design alternative provide one measure of relative worth which, combined with other considerations, will aid in selecting the best of the available options.

Once a design is selected, the reliability prediction may be used as a guide to improvement by showing the highest contributors to failure. If the part stress analysis method is used, it may also reveal other fruitful areas for change (e.g., over stressed parts).

The impact of proposed design changes on reliability can be determined only by comparing the reliability predictions of the existing and proposed designs.

The ability of the design to maintain an acceptable reliability level under environmental extremes may be assessed through reliability predictions. The predictions may be used to evaluate the need for environmental control systems.

The effects of complexity on the probability of mission success can be evaluated through reliability predictions. The need for redundant or back-up systems may be determined with the aid of reliability predictions. A tradeoff of redundancy against other reliability enhancing techniques (e.g.: more cooling, higher part quality, etc.) must be based on reliability predictions coupled with other pertinent considerations such as cost, space limitations, etc.

The prediction will also help evaluate the significance of reported failures. For example, if several failures of one type or component occur in a system, the predicted failure rate can be used to determine whether the number of failures is commensurate with the number of components used in the system, or, that it indicates a problem area.

Finally, reliability predictions are useful to various other engineering analyses. As examples, the location of built-in-test circuitry should be influenced by the predicted failure rates of the circuitry monitored, and maintenance strategy planners can make use of the relative probability of a failure's location, based on predictions, to minimize downtime. Reliability predictions are also used to evaluate the probabilities of failure events described in a failure modes, effects and criticality analysis (FMECAs).

3.0 INTRODUCTION

3.3 Limitations of Reliability Predictions - This handbook provides a common basis for reliability predictions, based on analysis of the best available data at the time of issue. It is intended to make reliability prediction as good a tool as possible. However, like any tool, reliability prediction must be used intelligently, with due consideration of its limitations.

The first limitation is that the failure rate models are point estimates which are based on available data. Hence, they are valid for the conditions under which the data was obtained, and for the devices covered. Some extrapolation during model development is possible, but the inherently empirical nature of the models can be severely restrictive. For example, none of the models in this handbook predict nuclear survivability or the effects of ionizing radiation.

Even when used in similar environments, the differences between system applications can be significant. Predicted and achieved reliability have always been closer for ground electronic systems than for avionic systems, because the environmental stresses vary less from system to system on the ground and hence the field conditions are in general closer to the environment under which the data was collected for the prediction model. However, failure rates are also impacted by operational scenarios, operator characteristics, maintenance practices, measurement techniques and differences in definition of failure. Hence, a reliability prediction should never be assumed to represent the expected field reliability as measured by the user (i.e., Mean-Time-Between-Maintenance, Mean-Time-Between-Removals, etc.). This does not negate its value as a reliability engineering tool; note that none of the applications discussed above requires the predicted reliability to match the field measurement.

Electronic technology is noted for its dynamic nature. New types of devices and new processes are continually introduced, compounding the difficulties of predicting reliability. Evolutionary changes may be handled by extrapolation from the existing models; revolutionary changes may defy analysis.

Another limitation of reliability predictions is the mechanics of the process. The part stress analysis method requires a significant amount of design detail. This naturally imposes a time and cost penalty. More significantly, many of the details are not available in the early design stages. For this reason this handbook contains both the part stress analysis method (Sections 5 through 23) and a simpler parts count method (Appendix A) which can be used in early design and bid formulation stages.

Finally, a basic limitation of reliability prediction is its dependence on correct application by the user. Those who correctly apply the models and use the information in a conscientious reliability program will find the prediction a useful tool. Those who view the prediction only as a number which must exceed a specified value can usually find a way to achieve their goal without any impact on the system.

3.4 Part Stress Analysis Prediction

3.4.1 Applicability - This method is applicable when most of the design is completed and a detailed parts list including part stresses is available. It can also be used during later design phases for reliability trade-offs vs. part selection and stresses. Sections 5 through 23 contain failure rate models for a broad variety of parts used in electronic equipment. The parts are grouped by major categories and, where appropriate, are subgrouped within categories. For mechanical and electromechanical parts not covered by this Handbook, refer to Bibliography items 20 and 36 (Appendix C).

The failure rates presented apply to equipment under normal operating conditions, i.e., with power on and performing its intended functions in its intended environment. Extrapolation of any of the base failure rate models beyond the tabulated values such as high or sub-zero temperature, electrical stress values above 1.0, or extrapolation of any associated model modifiers is completely invalid. Base failure rates can be interpolated between electrical stress values from 0 to 1 using the underlying equations.

The general procedure for determining a board level (or system level) failure rate is to sum individually calculated failure rates for each component. This summation is then added to a failure rate for the circuit board (which includes the effects of soldering parts to it) using Section 16, Interconnection Assemblies.

3.0 INTRODUCTION

For parts or wires soldered together (e.g., a jumper wire between two parts), the connections model appearing in Section 17 is used. Finally, the effects of connecting circuit boards together is accounted for by adding in a failure rate for each connector (Section 15, Connectors). The wire between connectors is assumed to have a zero failure rate. For various service use profiles, duty cycles and redundancies the procedures described in MIL-STD-756, Reliability Modeling and Prediction, should be used to determine an effective system level failure rate.

3.4.2 Part Quality - The quality of a part has a direct effect on the part failure rate and appears in the part models as a factor, π_Q . Many parts are covered by specifications that have several quality levels, hence, the part models have values of π_Q that are keyed to these quality levels. Such parts with their quality designators are shown in Table 3-1. The detailed requirements for these levels are clearly defined in the applicable specification, except for microcircuits. Microcircuits have quality levels which are dependent on the number of MIL-STD-883 screens (or equivalent) to which they are subjected.

Table 3-1: Parts With Multi-Level Quality Specifications

Part	Quality Designators		
Microcircuits	S, B, B-1, Other: Quality Judged by Screening Level		
Discrete Semiconductors	JANTXV, JANTX, JAN		
Capacitors, Established Reliability (ER)	D, C, S, R, B, P, M, L		
Resistors, Established Reliability (ER)	S, R, P, M		
Coils, Molded, R.F., Reliability (ER)	S, R, P, M		
Relays, Established Reliability (ER)	R, P, M, L		

Some parts are covered by older specifications, usually referred to as Nonestablished Reliability (Non-ER), that do not have multi-levels of quality. These part models generally have two quality levels designated as "MIL-SPEC.", and "Lower". If the part is procured in complete accordance with the applicable specification, the π_Q value for MIL-SPEC should be used. If any requirements are waived, or if a commercial part is procured, the π_Q value for Lower should be used.

The foregoing discussion involves the "as procured" part quality. Poor equipment design, production, and testing facilities can degrade part quality. The use of the higher quality parts requires a total equipment design and quality control process commensurate with the high part quality. It would make little sense to procure high quality parts only to have the equipment production procedures damage the parts or introduce latent defects. Total equipment program descriptions as they might vary with different part quality mixes is beyond the scope of this Handbook. Reliability management and quality control procedures are described in other DoD standards and publications. Nevertheless, when a proposed equipment development is pushing the state-of-the-art and has a high reliability requirement necessitating high quality parts, the total equipment program should be given careful scrutiny and not just

3.0 INTRODUCTION

the parts quality. Otherwise, the low failure rates as predicted by the models for high quality parts will not be realized.

3.4.3 Use Environment - All part reliability models include the effects of environmental stresses through the environmental factor, π_E , except for the effects of ionizing radiation. The descriptions of these environments are shown in Table 3-2. The π_E factor is quantified within each part failure rate model. These environments encompass the major areas of equipment use. Some equipment will experience more than one environment during its normal use, e.g., equipment in spacecraft. In such a case, the reliability analysis should be segmented, namely, missile launch (M_L) conditions during boost into and return from orbit, and space flight (S_E) while in orbit.

Table 3-2: Environmental Symbol and Description

Environment	π _E Symbol	Equivalent MIL-HDBK-217E, Notice 1 ##E Symbol	Description
Ground, Benign	G _B	G _B G _{MS}	Nonmobile, temperature and humidity controlled environments readily accessible to maintenance; includes laboratory instruments and test equipment, medical electronic equipment, business and scientific computer complexes, and missiles and support equipment in ground silos.
Ground, Fixed	G _F	G _F	Moderately controlled environments such as installation in permanent racks with adequate cooling air and possible installation in unheated buildings; includes permanent installation of air traffic control radar and communications facilities.
Ground, Mobile	G _M	G _M M _P	Equipment installed on wheeled or tracked vehicles and equipment manually transported; includes tactical missile ground support equipment, mobile communication equipment, tactical fire direction systems, handheld communications equipment, laser designations and range finders.
Naval, Sheltered	N _S	N _S N _{SB}	Includes sheltered or below deck conditions on surface ships and equipment installed in submarines.
Naval, Unsheltered	N _U	NH NOO NO	Unprotected surface shipborne equipment exposed to weather conditions and equipment immersed in salt water. Includes sonar equipment and equipment installed on hydrofoil vessels.

3.0 INTRODUCTION

Table 3-2: Environmental Symbol and Description (cont'd)

Environment	π _E Symbol	Equivalent MIL-HDBK-217E, Notice 1 π _E Symbol	Description
Airborne, Inhabited, Cargo	A _{IC}	A _{IC} A _{IT} A _{IB}	Typical conditions in cargo compartments which can be occupied by an aircrew. Environment extremes of pressure, temperature, shock and vibration are minimal. Examples include long mission aircraft such as the C130, C5, B52, and C141. This category also applies to inhabited areas in lower performance smaller aircraft such as the T38.
Airborne, Inhabited, Fighter	A _{IF}	A _{IF} A _{IA}	Same as A _{IC} but installed on high performance aircraft such as fighters and interceptors. Examples include the F15, F16, F111, F/A 18 and A10 aircraft.
Airborne, Uninhabited, Cargo	^A uc	AUC AUT AUB	Environmentally uncontrolled areas which cannot be inhabited by an aircrew during flight. Environmental extremes of pressure, temperature and shock may be severe. Examples include uninhabited areas of long mission aircraft such as the C130, C5, B52 and C141. This category also applies to uninhabited area of lower performance smaller aircraft such as the T38.
Airborne, Uninhabited, Fighter	A _{UF}	A _{UF} A _{UA}	Same as A _{UC} but installed on high performance aircraft such as fighters and interceptors. Examples include the F15, F16, F111 and A10 aircraft.
Airborne, Rotary Winged	A _{RW}	A _{RW}	Equipment installed on helicopters. Applies to both internally and externally mounted equipment such as laser designators, fire control systems, and communications equipment.
Space, Flight	S _F	s _F	Earth orbital. Approaches benign ground conditions. Vehicle neither under powered flight nor in atmospheric reentry; includes satellites and shuttles.

3.0 INTRODUCTION

Table 3-2: Environmental Symbol and Description (cont'd)

Environment	π _E Symbol	Equivalent MIL-HDBK-217E, Notice 1 π _E Symbol	Description
Missile, Flight	M _F	M _{FF} M _{FA}	Conditions related to powered flight of air breathing missiles, cruise missiles, and missiles in unpowered free flight.
Missile, Launch	M _L	M _L U _{SL}	Severe conditions related to missile launch (air, ground and sea), space vehicle boost into orbit, and vehicle re-entry and landing by parachute. Also applies to solid rocket motor propulsion powered flight, and torpedo and missile launch from submarines.
Cannon, Launch	C _L	CL	Extremely severe conditions related to cannon launching of 155 mm. and 5 inch guided projectiles. Conditions apply to the projectile from launch to target impact.

3.4.4 Part Failure Rate Models - Part failure rate models for microelectronic parts are significantly different from those for other parts and are presented entirely in Section 5.0. A typical example of the type of model used for most other part types is the following one for discrete semiconductors:

$$\lambda_p = \lambda_b \pi_T \pi_A \pi_R \pi_S \pi_C \pi_Q \pi_E$$

where:

 λ_{D} is the part failure rate,

 λ_b is the base failure rate usually expressed by a model relating the influence of electrical and temperature stresses on the part,

 π_E and the other π factors modify the base failure rate for the category of environmental application and other parameters that affect the part reliability.

The π_E and π_Q factors are used in most all models and other π factors apply only to specific models. The applicability of π factors is identified in each section.

The base failure rate (λ_b) models are presented in each part section along with identification of the applicable model factors. Tables of calculated λ_b values are also provided for use in manual calculations. The model equations can, of course, be incorporated into computer programs for machine processing. The tabulated values of λ_b are cut off at the part ratings with regard to temperature and stress, hence, use of parts beyond these cut off points will overstress the part. The use of the λ_b models in a computer

3.0 INTRODUCTION

program should take the part rating limits into account. The λ_b equations are mathematically continuous beyond the part ratings but such failure rate values are invalid in the overstressed regions.

All the part models include failure data from both catastrophic and permanent drift failures (e.g., a resistor permanently falling out of rated tolerance bounds) and are based upon a constant failure rate, except for motors which show an increasing failure rate over time. Failures associated with connection of parts into circuit assemblies are not included within the part failure rate models. Information on connection reliability is provided in Sections 16 and 17.

3.4.5 Thermal Aspects - The use of this prediction method requires the determination of the temperatures to which the parts are subjected. Since parts reliability is sensitive to temperature, the thermal analysis of any design should fairly accurately provide the ambient temperatures needed in using the part models. Of course, lower temperatures produce better reliability but also can produce increased penalties in terms of added loads on the environmental control system, unless achieved through improved thermal design of the equipment. The thermal analysis should be part of the design process and included in all the trade-off studies covering equipment performance, reliability, weight, volume, environmental control systems, etc. References 17 and 34 listed in Appendix C may be used as guides in determining component temperatures.

RELIABILITY ANALYSIS EVALUATION 4.0

Table 4-1 provides a general checklist to be used as a guide for evaluating a reliability prediction report. For completeness, the checklist includes categories for reliability modeling and allocation, which are sometimes delivered as part of a prediction report. It should be noted that the scope of any reliability analysis depends on the specific requirements called out in a statement-of-work (SOW) or system specification. The inclusion of this checklist is not intended to change the scope of these requirements.

Table 4-1: Reliability Analysis Checklist

Table 4-1: Reliability Analysis Checklist Major Concerns Comments					
Comments					
System design drawings/diagrams must be reviewed to be sure that the reliability model/diagram agrees with the hardware.					
Duty cycles, alternate paths, degraded conditions and redundant units must be defined and modeled.					
Unit failure rates and redundancy equations are used from the detailed part predictions in the system math model (See MIL-STD-756, Reliability Prediction and Modeling).					
Useful levels are defined as: equipment for subcontractors, assemblies for sub-subcontractors, circuit boards for designers.					
Conservative values are needed to prevent reallocation at every design change.					
Many predictions neglect to include all the parts producing optimistic results (check for solder connections, connectors, circuit boards).					
Optimistic quality levels and favorable environmental conditions are often assumed causing optimistic results.					
Temperature is the biggest driver of part failure rates; low temperature assumptions will cause optimistic results.					
Identification is needed so that corrective actions for reliability improvement can be considered.					
Use of alternate failure rates, if deemed necessary, require submission of backup data to provide credence in the values.					
Each component type should be sampled and failure rates completely reconstructed for accuracy. Prediction methods for advanced technology parts should be carefully evaluated for impact on the module and system.					

5.0 MICROCIRCUITS, INTRODUCTION

This section presents failure rate prediction models for the following ten major classes of microelectronic devices:

Section 5.1	Monolithic Bipolar Digital and Linear Gate/Logic Array Devices
.5.1	Monolithic MOS Digital and Linear Gate/Logic Array Devices
5.1	Monolithic Bipolar and MOS Digital Microprocessor Devices
5.2	Monolithic Bipolar and MOS Memory Devices
5.3	Very High Speed Integrated Circuit (VHSIC/VHSIC-Like and VLSI) CMOS Devices (> 60K Gates)
5.4	Monolithic GaAs Digital Devices
5.4	Monolithic GaAs MMIC
5.5	Hybrid Microcircuits
5.6	Surface Acoustic Wave Devices
5.7	Magnetic Bubble Memories

In the title description of each monolithic device type, Bipolar represents all TTL, ASTTL, DTL, ECL, CML, ALSTTL, HTTL, FTTL, F, LTTL, STTL, BiCMOS, LSTTL, IIL, I³L and ISL devices. MOS represents all metal-oxide microcircuits, which includes NMOS, PMOS, CMOS and MNOS fabricated on various substrates such as sapphire, polycrystalline or single crystal silicon. The hybrid model is structured to accommodate all of the monolithic chip device types and various complexity levels.

Monolithic memory complexity factors are expressed in the number of bits in accordance with JEDEC STD 21A. This standard, which is used by all government and industry agencies that deal with microcircuit memories, states that memories of 1024 bits and greater shall be expressed as K bits, where 1K = 1024 bits. For example, a 16K memory has 16,384 bits, a 64K memory has 65,536 bits and a 1M memory has 1,048,576 bits. Exact numbers of bits are not used for memories of 1024 bits and greater.

For devices having both linear and digital functions not covered by MIL-M-38510 or MIL-I-38535, use the linear model. Line drivers and line receivers are considered linear devices. For linear devices not covered by MIL-M-38510 or MIL-I-38535, use the transistor count from the schematic diagram of the device to determine circuit complexity.

For digital devices not covered by MIL-M-38510 or MIL-I-38535, use the gate count as determined from the logic diagram. A J-K or R-S flip flop is equivalent to 6 gates when used as part of an LSI circuit. For the purpose of this Handbook, a gate is considered to be any one of the following functions; AND, OR, exclusive OR, NAND, NOR and inverter. When a logic diagram is unavailable, use device transistor count to determine gate count using the following expressions:

Lechnology	Gate Approximation
Bipolar	No. Gates = No. Transistors/3.0
CMOS	No. Gates = No. Transistors/4.0
All other MOS except CMOS	No. Gates = No. Transistors/3.0

T - - la - - l - - - - -

MIL-HDBK-217F RE ■ 9999970 0070715 T ■

MIL-HDBK-217F

5.0 MICROCIRCUITS, INTRODUCTION

A detailed form of the Section 5.3 VHSIC/VHSIC-Like model is included as Appendix B to allow more detailed trade-offs to be performed. Reference 30 should be consulted for more information about this model.

Reference 32 should be consulted for more information about the models appearing in Sections 5.1, 5.2, 5.4, 5.5, and 5.6. Reference 13 should be consulted for additional information on Section 5.7.

5.1 MICROCIRCUITS, GATE/LOGIC ARRAYS AND MICROPROCESSORS

DESCRIPTION

- 1. Bipolar Devices, Digital and Linear Gate/Logic Arrays
- 2. MOS Devices, Digital and Linear Gate/Logic Arrays
- 3. Field Programmable Logic Array (PLA) and Programmable Array Logic (PAL)
- 4. Microprocessors

$$\lambda_p = (C_1 \pi_T + C_2 \pi_E) \pi_Q \pi_L$$
 Failures/10⁶ Hours

Bipolar Digital and Linear Gate/Logic Array Die Complexity Failure Rate - C1

Digital Lin		Linear		PLA/PAL	PLA/PAL	
No. Gates	C ₁	No. Transistors	C ₁	No. Gates	C ₁	
1 to 100 101 to 1,000 1,001 to 3,000 3,001 to 10,000 10,001 to 30,000 30,001 to 60,000	.0025 .0050 .010 .020 .040	1 to 100 101 to 300 301 to 1,000 1,001 to 10,000	.010 .020 .040 .060	Up to 200 201 to 1,000 1,001 to 5,000	.010 .021 .042	

MOS Linear and Digital Gate/Logic Array Die Complexity Failure Rate - C₁*

Digital		Linear		PLA/PAL	
No. Gates	C ₁	No. Transistors	C ₁	No. Gates	C ₁
1 to 100 101 to 1,000 1,001 to 3,000 3,001 to 10,000 10,001 to 30,000 30,001 to 60,000	.010 .020 .040 .080 .16	1 to 100 101 to 300 301 to 1,000 1,001 to 10,000	.010 .020 .040 .060	Up to 500 501 to 1,000 2,001 to 5,000 5,001 to 20,000	.00085 .0017 .0034 .0068

*NOTE: For CMOS gate counts above 60,000 use the VHSIC/VHSIC-Like model in Section 5.3

Microprocessor

Die Complexity Failure Rate - C₁

	Bipolar	MOS
No. Bits	C ₁	C ₁
Up to 8	.060	.14
Up to 16	.12	.28
Up to 32	.24	.56

All Other Model Parameters

Parameter	Refer to
π _T	Section 5.8
C ₂	Section 5.9
π _E , π _Q , π _L	Section 5.10

5.2 MICROCIRCUITS, MEMORIES

DESCRIPTION

- 1. Read Only Memories (ROM)
- 2. Programmable Read Only Memories (PROM)
- 3. Ultraviolet Eraseable PROMs (UVEPROM)
- 4. "Flash," MNOS and Floating Gate Electrically Eraseable PROMs (EEPROM). Includes both floating gate tunnel oxide (FLOTOX) and textured polysilicon type EEPROMs
- 5. Static Random Access Memories (SRAM)
- 6. Dynamic Random Access Memories (DRAM)

$$\lambda_p = (C_1 \pi_T + C_2 \pi_E + \lambda_{cyc}) \pi_Q \pi_L$$
 Failures/10⁶ Hours

Die Complexity Failure Rate - C₁

		MC)S		Bip	olar
Memory Size, B (Bits)	ROM	PROM, UVEPROM, EEPROM, EAPROM	DRAM	SRAM (MOS & BiMOS)	ROM, PROM	SRAM
Up to 16K 16K < B ≤ 64K 64K < B ≤ 256K 256K < B ≤ 1M	.00065 .0013 .0026 .0052	.00085 .0017 .0034 .0068	.0013 .0025 .0050 .010	.0078 .016 .031 .062	.0094 .019 .038 .075	.0052 .011 .021 .042

A_1 Factor for λ_{CVC} Calculation

Total No. of Programming Cycles Over EEPROM Life, C	Flotox ¹	Textured- Poly ²
Up to 100 100 < C ≤ 200 200 < C ≤ 500 500 < C ≤ 1K 1K < C ≤ 3K 3K < C ≤ 7K 7K < C ≤ 15K 15K < C ≤ 20K 20K < C ≤ 30K 30K < C ≤ 100K 100K < C ≤ 400K 400K < C ≤ 500K	2.7	.0097 .014 .023 .033 .061 .14 .30 .30 .30 .30

- 1. $A_1 = 6.817 \times 10^{-6}$ (C)
- No underlying equation for Textured-Poly.

A₂ Factor for λ_{cvc} Calculation

	<u> </u>
Total No. of Programming Cycles Over EEPROM Life, C	Textured-Poly A ₂
Up to 300K	0
300K < C ≤ 400K	1.1
400K < C ≤ 500K	2.3

All Other Model Parameters

Parameter	Refer to
π _T	Section 5.8
C ₂	Section 5.9
π _E , π _Q , π _L	Section 5.10
λ _{cyc} (EEPROMS only)	Page 5-5

 $\lambda_{cyc} = 0$ For all other devices

5.2 MICROCIRCUITS, MEMORIES

EEPROM Read/Write Cycling Induced Failure Rate - λ_{CYC}

All Memory Devices Except Flotox Textured-Poly EEPROMs	and	$\lambda_{\text{cyc}} = 0$						
Flotox and Textured Poly EEPROM	<i>l</i> Is	$\lambda_{\text{cyc}} = \left[A_1 B_1 + \frac{A_2 B_2}{\pi_Q} \right] \pi_{\text{ECC}}$						
Model Factor A ₁ B ₁ A ₂ B ₂ π _Q	Flotox Page 5-4 Page 5-6 $A_2 = 0$ $B_2 = 0$ Section 5.10	Textured-Poly Page 5-4 Page 5-6 Page 5-5 Page 5-6 Section 5.10						
Error Correction Code (ECC) Options: 1. No On-Chip ECC 2. On-Chip Hamming Code 3. Two-Needs-One Redundant Cell Approach	$\pi_{\text{ECC}} = 1.0$ $\pi_{\text{ECC}} = .72$ $\pi_{\text{ECC}} = .68$	$\pi_{\text{ECC}} = 1.0$ $\pi_{\text{ECC}} = .72$ $\pi_{\text{ECC}} = .68$						

NOTES:

- 1. See Reference 24 for modeling off-chip error detection and correction schemes at the memory system level.
- 2. If EEPROM type is unknown, assume Flotox.
- 3. Error Correction Code Options: Some EEPROM manufacturers have incorporated on-chip error correction circuitry into their EEPROM devices. This is represented by the on-chip hamming code entry. Other manufacturers have taken a redundant cell approach which incorporates an extra storage transistor in every memory cell. This is represented by the two-needs-one redundant cell entry.
- 4. The A₁ and A₂ factors shown in Section 5.2 were developed based on an assumed system life of 10,000 operating hours. For EEPROMs used in systems with significantly longer or shorter expected lifetimes the A₁ and A₂ factors should be multiplied by:

System Lifetime Operating Hours 10,000

5.2 MICROCIRCUITS, MEMORIES

		Σ	2.1	2.0	9.1	8.	1.7	1.6	1.5	4.	<u>د</u> . ز			i -	-	1.0	86:	.94	6.	8 6	ς ξ	.77	.75	.72	0.5	80. 1	0 0	9. <u>c</u>	9 8	90.				_		
	,3 (B ₂)	256K	1.5	4.	1.3	1.3	1.2	- :	1.1	1.0	96.	.91	۵. ده	62	.75	.72	69.	99.	.64	6.	ų r	.55	.53	.51	5.50	4. 4 5 0	4. 4	4. 4. 4.	4.	1 ,	÷	273 - 303	`			
	Textured-Poly ³ (B ₂)	64K	-	0.	.95	88	.84	.80	.75	.72	89	65	70.	56	54	.5	49	.47	.45	4. 4 4. c	4. 7 T	98.	38	.36	35.	ئ 4 د	ລຸ ລຸດ	S E	6	87.	+	+ (7				
	Text	16K	0.76	0.71	0.67	0.63	0.59	0.56	0,53	0.50	0.48	0.45	24.0	0.39	0.38	0.36	0.35	0.33	0.32	0.31	200	0.27	0.27	0.26	0.25	0.24	2.0	0.63	0.21	0.21	12 8.617 x 10 ⁻⁵					
		4 7	54	.50	.47	.45	.42	.40	.38	98.	£.	.32	ئ - د	28	.27	.26	.25	24	53	55.5	4 6	9.5	19	.18	<u></u>	<u> </u>	0 4	<u>.</u> 4	. .	0		exp (8.61	,			
tion		Σ	1.9	5.0	2.5	2.3	2.5	2.7	2.8	3.0	3.2	4. 0	5 c	0.7	6.4	4.5	4.7	5.0	2.5	υ. υ.		9 6	6.5	8.9	7.1	4. 7	. 0	ο α Ο Ο	9 60 6	o	.25 r	_				
Calcula	(B ₁)	256K	1.3	4.1	1.5	1.6	1.8	1.9	2.0	2.1	2.3	4.2	0 . 0 .	2.9	3.0	3.2	3.4	3.5	3.7	ი -	- c	4.4	4.6	4.8	5.0	2.5	0, r	o o	6.1	0.0	a	<u>6</u>				
and B_2 Factors for λ_{cyc} Calculation	Textured-Poly ² (B ₁)	64K	94	1.0		1.2	5	.	4.	ر. تن	9.	7.7	ο c	200	2.2	2.3	2.4	2.5	2.6	ω. α. α	, c	3.2	3.3	3.4	3.6		ກ <	4 4 5 0	. 4. 4 i ພ ກ	t.		2. B ₁ =			io	
Factors	Texture	16K	99	.7	77.	.82	88.	.95	0.		- :	. .	- + 5 <	4	1.5	1.6	1.7	1 .8	6.	0. c	, c	2.5	2.3	2.4	2.5	0 1.0	, o	0 0	9.0	- 6					etermina)	
		4 7	47	.50	54	.58	.62	.67	.71	92.	<u>8</u> . 5	86 5	ب ا	g. 0	=	1.	1.2	1.3	<u>ლ</u>	 4: 4	- +- ‡ r.	6.	1.6	1.7	— , œ (_ +	- c	, c	. 22 5	2.2		$\frac{333}{3}$	` `	$\frac{1}{303}$	See Section 5.11 for T _J Determination	
B		Σ	4.3	4.8	5.2	5.7	6.3	8.9	7.4	8.0	9.6		2 =	- 22	12	5	4	15	9 !	<u>_</u>	<u> </u>	2 8	21	ผ	ឌ	4 6	3 6	3 6	887	2	•	273 - 33		273 - 3	ction 5.11	
	(B ₁)	256K	2.2	2.4	2.7	5.9	3.2	3.4	3.7	4	4 . 4 i	4. n	. r	6 60	6.2	6.7	7.1	7.5	0.0	20 c	פ פ פ	5 0	F	=	27 5	7 5	5 5	<u> </u>	र्फ म	- L	+					
	otox ¹ (64K		1.2	د .	1.4	1.6	1.7	1.9	2.0	2.5	2, c	0.7 7	2.9	3.1	3.3	3.5	3.8	4.0	4, 4 2, 14	. 4	5.0	5.3	5.6	2.8	- v	0 W		4.7	;	. 15	7 x 10 ⁻⁵		.1 7 x 10 ⁻⁵	ture (°C)	_ 1004 bite
	<u> </u>	16K	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3.7	o.0	,	8.61	,	8.61	Tempera	7																									
		→ 4K	.27	30	.33	.36	.40	.43	.47	.51	55.	ري د د د	9. g	23.	.78	83	83	.94	0.		- 0	ا ن	ر ن	4.		ر ن م		. 6	0.0	6.	.5. T	dxa ().25 [exp	Junction -	HOTE.
		Memory Size, B(Bits) → 4K T _J (°C)	25	8	35	4	45	20	55	8	92	2 1	c 6	8 88	8	95	901	105	2	2 5	3 50	8	135	140	\$ 5	5 1	6 6	3 5	170	2/	a .	1. $B_1 = (16000)$		3. $B_2 = \left(\frac{B}{64000}\right)$	T_J = Worse Case Junction Temperature (°C).	B - Number of bits NOTE: 1K

5.3 MICROCIRCUITS, VHSIC/VHSIC-LIKE AND VLSI CMOS

DESCRIPTION

CMOS greater than 60,000 gates

 $\lambda_p = \lambda_{BD} \pi_{MFG} \pi_{T} \pi_{CD} + \lambda_{BP} \pi_{E} \pi_{Q} \pi_{PT} + \lambda_{EOS}$ Failures/10⁶ Hours

Die Base Failure Rate - λ_{RD}

	שטיי
Part Type	λ _{BD}
Logic and Custom Gate Array and Memory	0.16 0.24

All Other Model Parameters

Parameter	Refer to
π _Τ	Section 5.8 Section 5.10
π_{E},π_{Q}	Section 5.10

Manufacturing Process Correction Factor - π_{MFG}

	IVII CI
Manufacturing Process	πMFG
QML or QPL Non QML or Non QPL	.55 2.0

Package Type Correction Factor - π_{PT}

	π _{PT}									
Package Type	Hermetic	Nonhermetic								
DIP Pin Grid Array Chip Carrier (Surface Mount Technology)	1.0 2.2 4.7	1.3 2.9 6.1								

Die Complexity Correction Factor - π_{CD}

Feature Size			Die Area (cm ²)	CD								
(Microns)	A ≤ .4	.4 < A ≤ .7	.7 < A ≤ 1.0	1.0 < A ≤ 2.0	2.0 < A ≤ 3.0							
.80 1.00 1.25	8.0 5.2 3.5	14 8.9 5.8	19 13 8.2	38 25 16	58 37 24							
$\pi_{CD} = \left(\frac{A}{(.21)} \times \left(\frac{2}{X_s}\right)^2 \times (.64)\right) + .36$ A = Total Scribed Chip Die Area in cm ² X_s = Feature Size (microns)												
Die Area Conversi	ion: cm ² = MIL ²	* + 155,000										

Package Base Failure Rate - λ_{RP}

Number of Pins	λ _{BP}
24	.0026
28	.0027
40	.0029
44	.0030
48	.0030
52	.0031
64	.0033
84	.0036
120	.0043
124	.0043
144	.0047
220	.0060
$\lambda_{\rm DD} = .0022 + ((1.72 \times 10^{-5}) (NP))$	

Electrical Overstress Failure Rate - λ_{EOS}

	EO3
V _{TH} (ESD Susceptibility (Volts))*	^λ EOS
0 - 1000	.065
> 1000 - 2000	.053
> 2000 - 4000	.044
> 4000 - 16000	.029
> 16000	.0027
i e	

 $\lambda_{EOS} = (-\ln (1 - .00057 \exp(-.0002 V_{TH}))).00876$

V_{TH} = ESD Susceptibility (volts)

* Voltage ranges which will cause the part to fail. If unknown, use 0 - 1000 volts.

= Number of Package Pins

NP

5.4 MICROCIRCUITS, GaAs MMIC AND DIGITAL DEVICES

DESCRIPTION

Gallium Arsenide Microwave Monolithic Integrated Circuit (GaAs MMIC) and GaAs Digital Integrated Circuits using MESFET Transistors and Gold Based Metallization

$\lambda_p = [C_1 \pi_T \pi_A + C_2 \pi_E] \pi_L \pi_Q$ Failures/10⁶ Hours

MMIC: Die Complexity Failure Rates - C1

	•	
Complexity (No. of Elements)	C ₁	
1 to 100 101 to 1000	4.5 7.2	
C ₁ accounts for the following active elements: transistors, diodes.		

Digital: Die Complexity Failure Rates - C1

Complexity (No. of Elements)	C ₁
1 to 1000 1,001 to 10,000	25 51
C ₁ accounts for the following active elements: transistors, diodes.	

Device Application Factor - π_{Δ}

X	
Application	πA
MMIC Devices Low Noise & Low Power (≤ 100 mW) Driver & High Power (> 100 mW) Unknown	1.0 3.0 3.0
Digital Devices All Digital Applications	1.0

All Other Model Parameters

Parameter	Refer to
π_{T}	Section 5.8
C ₂	Section 5.9
π_{E} , π_{L} , π_{Q}	Section 5.10

MIL-HDBK-217F NOTICE 2

5.5 MICROCIRCUITS, HYBRIDS

DESCRIPTION Hybrid Microcircuits

Hybrid Microcircuits

 λ_{p} = [Σ N_C λ_{c}] (1 + .2 π_{E}) π_{F} π_{Q} π_{L} Failures/10⁶ Hours

N_C = Number of Each Particular Component

 λ_c = Failure Rate of Each Particular Component

The general procedure for developing an overall hybrid failure rate is to calculate an individual failure rate for each component type used in the hybrid and then sum them. This summation is then modified to account for the overall hybrid function (π_F), screening level (π_Q), and maturity (π_L). The hybrid package failure rate is a function of the active component failure modified by the environmental factor (i.e., (1 + .2 π_E)). Only the component types listed in the following table are considered to contribute significantly to the overall failure rate of most hybrids. All other component types (e.g., resistors, inductors, etc.) are considered to contribute insignificantly to the overall hybrid failure rate, and are assumed to have a failure rate of zero. This simplification is valid for most hybrids; however, if the hybrid consists of mostly passive components then a failure rate should be calculated for these devices. If factoring in other component types, assume $\pi_Q = 1$, $\pi_F = 1$ and $T_A = \text{Hybrid Case Temperature for these calculations}$.

Determination of λ_c

Determine λ _C for These Component Types	Handbook Section	Make These Assumptions When Determining λ _C
Microcircuits	5	$C_2 = 0$, $\pi_Q = 1$, $\pi_L = 1$, T_J as Determined from Section 5.12, $\lambda_{BP} = 0$ (for VHSIC).
Discrete Semiconductors	6	$\pi_{Q} = 1$, $\pi_{A} = 1$, T_{J} as Determined from Section 6.14, $\pi_{E} = 1$.
Capacitors	10	$\pi_Q = 1$, $T_A = \text{Hybrid Case Temperature}$, $\pi_E = 1$.

NOTE:

If maximum rated stress for a die is unknown, assume the same as for a discretely package die of the same type. If the same die has several ratings based on the discrete packaged type, assume the lowest rating. Power rating used should be based on case temperature for discrete semiconductors.

Circuit Function Factor - π_E

Circuit Type	π _F
Digital	1.0
Video, 10 MHz < f < 1 GHz	1.2
Microwave, f > 1 GHz	2.6
Linear, f < 10 MHz	5.8
Power	21

All Other Hyl	brid Model	Parameters
---------------	------------	-------------------

π _L , π _Q , π _E	Refer to Section 5.10

5.6 MICROCIRCUITS, SAW DEVICES

DESCRIPTION

Surface Acoustic Wave Devices

 $\lambda_{\rm p}$ = 2.1 $\pi_{\rm Q}$ $\pi_{\rm E}$ Failures/10⁶ Hours

Quality Factor - πο

Screening Level	πQ
10 Temperature Cycles (-55°C to +125°C) with end point electrical tests at temperature extremes.	.10
None beyond best commerical practices.	1.0

Environmental Factor - π_E

Environment	π _E
G _B	.5
G _F	2.0
G _M	4.0
N _S	4.0
N _U	6.0
A _{IC}	4.0
A _{IF}	5.0
A _{UC}	5.0
A _{UF}	8.0
	8.0
A _{RW} S _F	.50
M _F	5.0
ML	12
CL	220

Document provided by IHS.

5.7 MICROCIRCUITS, MAGNETIC BUBBLE MEMORIES

The magnetic bubble memory device in its present form is a non-hermetic assembly consisting of the following two major structural segments:

- 1. A basic bubble chip or die consisting of memory or a storage area (e.g., an array of minor loops), and required control and detection elements (e.g., generators, various gates and detectors).
- A magnetic structure to provide controlled magnetic fields consisting of permanent magnets, 2. coils, and a housing.

These two structural segments of the device are interconnected by a mechanical substrate and lead frame. The interconnect substrate in the present technology is normally a printed circuit board. It should be noted that this model does not include external support microelectronic devices required for magnetic bubble memory operation. The model is based on Reference 33. The general form of the failure rate model is:

$$\lambda_p = \lambda_1 + \lambda_2$$
 Failures/10⁶ Hours

where:

 λ_1 = Failure Rate of the Control and Detection Structure

$$\lambda_1 = \pi_Q [N_C C_{11} \pi_{T1} \pi_W + (N_C C_{21} + C_2) \pi_E] \pi_D \pi_L$$

 λ_2 = Failure Rate of the Memory Storage Area

$$\lambda_2 = \pi_Q N_C (C_{12} \pi_{T2} + C_{22} \pi_E) \pi_L$$

Chips Per Package - No

Number of Bubble Chips per NC Packaged Device

Temperature Factor – π_T

$$\pi_{T} = (.1) \exp \left[\frac{-Ea}{8.63 \times 10^{-5}} \left(\frac{1}{T_{J} + 273} - \frac{1}{298} \right) \right]$$

Use: $E_a = .8$ to Calculate π_{T1}

= .55 to Calculate π_{T2}

Junction Temperature (°C), $25 \le T_J \le 175$

= T_{CASE} + 10°C

Device Complexity Failure Rates for Control and Detection Structure - C11 and C21

$$C_{11} = .00095(N_1)^{.40}$$

$$C_{21} = .0001(N_1)^{.226}$$

Number of Dissipative Elements on a Chip (gates, detectors, generators, etc.), N₁ ≤ 1000

5.7 MICROCIRCUIT, MAGNETIC BUBBLE MEMORIES

Write Duty Cycle Factor - π_W

$$\pi_{W} = \frac{10D}{(R/W).3}$$

$$\pi_{W} = 1$$
 for D \le .03 or R/W \ge 2154

R/W = No. of Reads per Write

NOTE:

For seed-bubble generators, divide π_W by 4, or use 1, whichever is

greater.

Duty Cycle Factor - πD

$$\pi_{D} = .9D + .1$$

D = Avg. Device Data Rate

Mfg. Max. Rated Data Rate ≤ 1

Device Complexity Failure Rates for Memory Storage Structure - C₁₂ and C₂₂

$$C_{12} = .00007(N_2)^{.3}$$

$$C_{22} = .00001(N_2)^{.3}$$

$$N_2$$
 = Number of Bits, $N_2 \le 9 \times 10^6$

All Other Model Parameters

Parameter	Section
C ₂	5.9
π _E , π _Q , π _L	5.10

MIL-HDBK-217F NOTICE 1

5.8 MICROCIRCUITS, π_{T} TABLE FOR ALL

ſ				
Temperature Factor For All Microcircuits - πŢ	GaAs Digital	1.4	1.00E-08 2.50E-08 5.90E-08 3.10E-07 1.50E-06 6.80E-07 1.50E-06 6.80E-05 1.30E-06 1.30E-04 1.70E-04 3.20E-04 1.70E-04 3.20E-04 1.80E-04 1.80E-02 2.40E-01 1.60E-01	80
	GaAs MMIC	1.5	3.20E-09 8.40E-09 2.10E-08 1.30E-07 1.50E-07 1.50E-06 1.40E-05 2.10E-04 4.00E-04 4.30E-03 3.70E-02 3.70E-02 3.70E-02 1.60E-01 1.60E-01 2.60E-01 2.60E-01 9.90E-01	(ada Devices ss). ss). ection 5.11 for the closest ation.
	Memories (Bipolar & MOS), MNOS	9.	01: 52: 53: 53: 53: 53: 53: 53: 53: 53: 53: 53	ure (GaAs Devices). alues shown in Section of under consideration
	Linear (Bipolar & MOS)	.65	10 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	$\exp\left(\frac{-Ea}{8.617 \times 10^{-5}} \left(\frac{1}{T_J + 273} - \frac{1}{298}\right)\right) \text{ Silicon Devices} \qquad \pi_T = .1 \exp\left(\frac{-Ea}{8.617 \times 10^{-5}} \left(\frac{1}{T_J + 273} - \frac{1}{423}\right)\right) \text{ GaAs Device}$ Effective Activation Energy (eV) (Shown Above) Worse Case Junction Temperature (Silicon Devices) or Average Active Device Channel Temperature (GaAs Devices). See Section 5.11 (or Section 5.12 for Hybrids) for T_J Determination. $\frac{1}{10} = \frac{1}{10} = \frac$
	Digital MOS, VHSIC CMOS	.35	1.00 2.24 2.25 2.25 2.25 2.25 2.25 2.25 2.25	$\frac{1}{5}\left(\overline{T_J+273}-\frac{1}{298}\right)\right) \ \text{Silicon Devices} \qquad \qquad \mathbf{r_T}=.1$ n Energy (eV) (Shown Above) for Temperature (Silicon Devices) or Average Active Device C for Section 5.12 for Hybrids) for T_J Determination. T _C + P $\theta_{,C}$ Case Temperature (°C) Device Power Dissipation (W) Unrition to Case Thermal Resistance (°C,W) de obtained from the device manufacturer, MIL-M-38510, or t device.
	IIL, ISL	9.	0: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2:	$\frac{1}{5} \left(\overline{T_J + 273} - \overline{298} \right) \right) \text{ Silicon Devices}$ n Energy (eV) (Shown Above) tion Temperature (Silicon Devices) or Average Act (or Section 5.12 for Hybrids) for T_J Determination. $T_C + P \theta_{JC}$ Case Temperature (°C) Device Power Dissipation (W) Junction to Case Thermal Resistance (°C,W) db eobtained from the device manufacturer, MiL-1 device.
	BICMOS, LSTTL, LTTL, ALSTTI	c.	10 10 10 10 10 10 10 10 10 10 10 10 10 1	$\exp\left(\frac{-Ea}{8.617 \times 10^{-5}} \left(\frac{1}{T_J + 273} - \frac{1}{298}\right)\right) \text{ Si}$ Effective Activation Energy (eV) (Shown Above) Worse Case Junction Temperature (Silicon Devi See Section 5.11 (or Section 5.12 for Hybrids) to $\frac{1}{C} = \frac{1}{C} = \frac{1}{C} + \frac{1}{C} + \frac{1}{C} = \frac$
	M., SM., ASTIL, CML, HTM., FTIL, OTI. ECI.	4.	0. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	exp (-8. Effective Norse (See Sec Sec Sec Sec Sec Sec Sec Sec Sec
		=a(eV) →	K 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	NOTES:

MIL-HDBK-217F NOTICE 1 RE ■ 9999970 0076100 3 ■ MIL-HDBK-217F

5.9 MICROCIRCUITS, C2 TABLE FOR ALL

Package Failure Rate for all Microcircuits - C2

		Packag	је Туре		
Number of Functional Pins, N _p	Hermetic: DIPs w/Solder or Weld Seal, Pin Grid Array (PGA) ¹ , SMT (Leaded and Nonleaded)	DIPs with Glass Seal ²	Flatpacks with Axial Leads on 50 Mil Centers ³	Cans ⁴	Nonhermetic: DIPs, PGA, SMT (Leaded and Nonleaded) ⁵
3 4 6 8 10 12 14 16 18 22 24 28 36 40 64 80 128 180 224	.00092 .0013 .0019 .0026 .0034 .0041 .0048 .0056 .0064 .0079 .0087 .010 .013 .015 .025 .032 .053 .076	.00047 .00073 .0013 .0021 .0029 .0038 .0048 .0059 .0071 .0096 .011 .014 .020 .024	.00022 .00037 .00078 .0013 .0020 .0028 .0037 .0047 .0058 .0083 .0098	.00027 .00049 .0011 .0020 .0031 .0044 .0060 .0079	.0012 .0016 .0025 .0034 .0043 .0053 .0062 .0072 .0082 .010 .011 .013 .017 .019 .032 .041 .068 .098

1.
$$C_2 = 2.8 \times 10^{-4} (N_p)^{1.08}$$

2.
$$C_2 = 9.0 \times 10^{-5} (N_p)^{1.51}$$

3.
$$C_2 = 3.0 \times 10^{-5} (N_p)^{1.82}$$

4.
$$C_2 = 3.0 \times 10^{-5} (N_p)^{2.01}$$

5.
$$C_2 = 3.6 \times 10^{-4} (N_p)^{1.08}$$

NOTES:

1. SMT: Surface Mount Technology

2. DIP: Dual In-Line Package

3. If DIP Seal type is unknown, assume glass

4. The package failure rate (C₂) accounts for failures associated only with the package itself. Failures associated with mounting the package to a circuit board are accounted for in Section 16, Interconnection Assemblies.

5.10 MICROCIRCUITS, $\pi_{\text{E}}, \lambda_{\text{L}}$ AND π_{Q} TABLES FOR ALL

Environment Factor - π_E

Environment	πE
G _B	.50
G _F	2.0
G _F G _M	4.0
l ^N S	4.0
N _U	6.0
	4.0
A _{IC} A _{IF}	5.0
Auc	5.0
A _{UF}	8.0
A _{RW}	8.0
S _F	.50
MF	5.0
M _L	12
M _L C _L	220

Learning Factor - π_{L}

Years in Production, Y	π_{L}
≤ .1 .5 1.0 1.5 ≥ 2.0	2.0 1.8 1.5 1.2 1.0
π_{L} = .01 exp(5.3535Y)	
Y = Years generic device to in production	ype has been

Quality Factors - π_O

	Description	π_{Q}			
Class 1.	S Categories: Procured in full accordance with MIL-M-38510, Class S requirements. Procured in full accordance	.25			
3.	with MIL-I-38535 and Appendix B thereto (Class U). Hybrids: (Procured to Class				
	S requirements (Quality Level K) of MIL-H-38534.				
Class	B Categories:				
1.	Procured in full accordance with MIL-M-38510, Class B requirements.	-			
2.	Procured in full accordance with MIL-I-38535, (Class Q).	1.0			
3.	Hybrids: Procured to Class B requirements (Quality Level H) of MIL-H-38534.				
Class	B-1 Category:				
req of f Mill oth doc hyb	Fully compliant with all requirements of paragraph 1.2.1 of MIL-STD-883 and procured to a MIL drawing, DESC drawing or other government approved documentation. (Does not include hybrids). For hybrids use custom screening section below.				

5.10 MICROCIRCUITS, π_{E} , π_{L} AND π_{Q} TABLES FOR ALL

Quality Factors (cont'd): π_{O} Calculation for Custom Screening Programs

Group	MIL-STD-883 Screen/Test (Note 3)	Point	Valuation
1*	TM 1010 (Temperature Cycle, Cond B Minimum) and TM 2001 (Constant Acceleration, Cond B Minimum) and TM 5004 (or 5008 for Hybrids) (Final Electricals @ Temp Extremes) and TM 1014 (Seal Test, Cond A, B, or C) and TM 2009 (External Visual)	50	
2*	TM 1010 (Temperature Cycle, Cond B Minimum) or TM 2001 (Constant Acceleration, Cond B Minimum) TM 5004 (or 5008 for Hybrids) (Final Electricals @ Temp Extremes) and TM 1014 (Seal Test, Cond A, B, or C) and TM 2009 (External Visual)	37	
3	Pre-Burn in Electricals TM 1015 (Burn-in B-Level/S-Level) and TM 5004 (or 5008 for Hybrids) (Post Burn-in Electricals @ Temp Extremes)	30 36	(B Level) (S Level)
4*	TM 2020 Pind (Particle Impact Noise Detection)	11	
5	TM 5004 (or 5008 for Hybrids) (Final Electricals @ Temperature Extremes)	11	(Note 1)
6	TM 2010/17 (Internal Visual)	7	
7*	TM 1014 (Seal Test, Cond A, B, or C)	7	(Note 2)
8 .	TM 2012 (Radiography)	7	
9	TM 2009 (External Visual)	7	(Note 2)
10	TM 5007/5013 (GaAs) (Wafer Acceptance)	1	
11	TM 2023 (Non-Destructive Bond Pull)	11	

$$\pi_Q = 2 + \frac{87}{\Sigma \text{ Point Valuations}}$$

*NOT APPROPRIATE FOR PLASTIC PARTS.

NOTES:

- 1. Point valuation only assigned if used independent of Groups 1, 2 or 3.
- 2. Point valuation only assigned if used independent of Groups 1 or 2.
- 3. Sequencing of tests within groups 1, 2 and 3 must be followed.
- 4. TM refers to the MIL-STD-883 Test Method.
- Nonhermetic parts should be used only in controlled environments (i.e., G_B and other temperature/humidity controlled environments).

EXAMPLES:

- 1. Mfg. performs Group 1 test and Class B burn-in: $\pi_Q = 2 + \frac{87}{50+30} = 3.1$
- 2. Mfg. performs internal visual test, seal test and final electrical test: $\pi_Q = 2 + \frac{87}{7+7+11} = 5.5$

$$\pi_Q = 10$$

5.11 MICROCIRCUITS, T DETERMINATION, (ALL EXCEPT HYBRIDS)

Ideally, device case temperatures should be determined from a detailed thermal analysis of the equipment. Device junction temperature is then calculated with the following relationship:

$$T_J = T_C + \theta_{JC}P$$

 T_J = Worst Case Junction Temperature (°C).

T_C = Case Temperature (°C). If not available, use the following default table.

Default Case Temperature (T_C) for all Environments

Environment	GB	G_F	G _M	NS	Nυ	A _{IC}	A _{IF}	AUC	A _{UF} `	A _{RW}	S _F	MF	M_{L}	. C _L
T _C (°C)	35	45	50	45	50	60	60	75	75	60	35	50	60	45

 θ_{JC} = Junction-to-case thermal resistance (°C/watt) for a device soldered into a printed circuit board. If θ_{JC} is not available, use a value contained in a specification for the closest equivalent device or use the following table.

Package Type	Die Area > 14,400 mil ² θ _{JC}	Die Area ≤ 14,400 mil ²
(Ceramic Only)	(°C/W)	θ _{JC} (°C/W)
Dual-In-Line	11	28
Flat Package	10	22
Chip Carrier	10	20
Pin Grid Array	10	20
Can	-	70

P = The maximum power dissipation realized in a system application. If the applied power is not available, use the maximum power dissipation from the specification for the closest equivalent device.

5.12 MICROCIRCUITS, T. DETERMINATION, (FOR HYBRIDS)

This section describes a method for estimating junction temperature (T_J) for integrated circuit dice mounted in a hybrid package. A hybrid is normally made up of one or more substrate assemblies mounted within a sealed package. Each substrate assembly consists of active and passive chips with thick or thin film metallization mounted on the substrate, which in turn may have multiple layers of metallization and dielectric on the surface. Figure 5-1 is a cross-sectional view of a hybrid with a single multi-layered substrate. The layers within the hybrid are made up of various materials with different thermal characteristics. The table following Figure 5-1 provides a list of commonly used hybrid materials with typical thicknesses and corresponding thermal conductivities (K). If the hybrid internal structure cannot be determined, use the following default values for the temperature rise from case to junction: microcircuits, 10°C; transistors, 25°C; diodes, 20°C. Assume capacitors are at T_C.

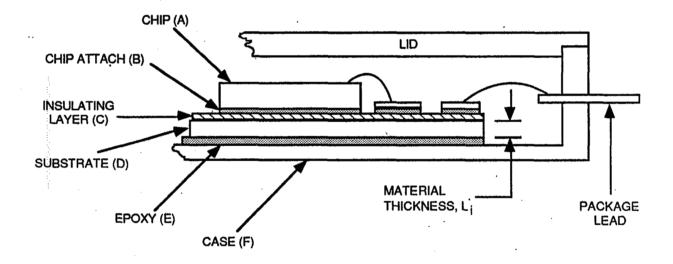


Figure 5-1: Cross-sectional View of a Hybrid with a Single Multi-Layered Substrate

MIL-HDBK-217F NOTICE 1

5.12 MICROCIRCUITS, TJ DETERMINATION, (FOR HYBRIDS)

Typical Hybrid Characteristics

Material Typical Usage		Typical Thickness, L _i (in.)	Feature From Figure 5-1	Thermal Conductivity, K _i (W/in ² °C/in	$ \frac{\binom{1}{K_i}\binom{L_i}{}}{\binom{\ln^2 \circ C/W}{}} $
Silicon	Chip Device	0.010	Α	2.20	.0045
GaAs	Chip Device	0.0070	Α	.76	.0092
Au Eutectic	Chip Attach	0.0001	В	6.9	.000014
Solder	Chip/Substrate Attach	0.0030	B/E	1.3	.0023
Epoxy (Dielectric)	Chip/Substrate Attach	0.0035	B/E	.0060	,58
Epoxy (Conductive)	Chip Attach	0.0035	В	.15	.023
Thick Film Dielectric	Glass Insulating Layer	0.0030	С	.66	.0045
Alumina	Substrate, MHP	0.025	. D	.64	.039
Beryllium Oxide	Substrate, PHP	0.025	D	6.6	.0038
Kovar	Case, MHP	0.020	F	.42	.048
Aluminum	Case, MHP	0.020	F	4.6	.0043
Copper	Case, PHP	0.020	F	9.9	.0020

NOTE: MHP: Multichip Hybrid Package, PHP: Power Hybrid Package (Pwr: ≥ 2W, Typically)

$$\theta_{JC} = \frac{\sum\limits_{i=1}^{n} \left(\frac{1}{K_{i}}\right) \left(L_{i}\right)}{A}$$

n = Number of Material Layers

 K_i = Thermal Conductivity of ith Material $\left(\frac{W/in^2}{\circ C/in}\right)$ (User Provided or From Table)

L_i = Thickness of ith Material (in) (User Provided or From Table)

A = Die Area (in²). If Die Area cannot be readily determined, estimate as follows: $A = [.00278 \text{ (No. of Die Active Wire Terminals)} + .0417]^2$

Estimate T_J as Follows:

$$T_{J} = T_{C} + (\theta_{JC}) (P_{D})$$

 T_C = Hybrid Case Temperature (°C). If unknown, use the T_C Default Table shown in Section 5.11.

 θ_{JC} = Junction-to-Case Thermal Resistance (°C/W) (As determined above)

P_D = Die Power Dissipation (W)

5.13 MICROCIRCUITS, EXAMPLES

Example 1: CMOS Digital Gate Array

Given:

A CMOS digital timing chip (4046) in an airborne inhabited cargo application, case temperature 48°C, 75mW power dissipation. The device is procured with normal manufacturer's screening consisting of temperature cycling, constant acceleration, electrical testing, seal test and external visual inspection, in the sequence given. The component manufacturer also performs a B-level burn-in followed by electrical testing. All screens and tests are performed to the applicable MIL-STD-883 screening method. The package is a 24 pin ceramic DIP with a glass seal. The device has been manufactured for several years and has 1000 transistors.

$$\lambda_{p} = (C_{1}\pi_{T} + C_{2}\pi_{E}) \, \pi_{Q}\pi_{L} \qquad \text{Section 5.1}$$

$$C_{1} = .020 \qquad 1000 \, \text{Transistors} \approx 250 \, \text{Gates, MOS C}_{1} \, \text{Table, Digital Column}$$

$$\pi_{T} = .29 \qquad \text{Determine T}_{J} \, \text{from Section 5.11}$$

$$T_{J} = 48^{\circ}\text{C} + (28^{\circ}\text{C/W})(.075\text{W}) = 50^{\circ}\text{C}$$

$$\text{Determine } \pi_{T} \, \text{from Section 5.8, Digital MOS Column.}$$

$$C_{2} = .011 \qquad \text{Section 5.9}$$

$$\pi_{E} = 4.0 \qquad \text{Section 5.10}$$

$$\pi_{Q} = 3.1 \qquad \text{Section 5.10}$$

$$\text{Group 1 Tests } \quad \text{50 Points}$$

$$\text{Group 3 Tests (B-level)} \quad \text{30 Points}$$

$$\text{TOTAL} \quad \text{80 Points}$$

$$\pi_{Q} = 2 + \frac{87}{80} = 3.1$$

$$\pi_{L} = 1 \qquad \text{Section 5.10}$$

$$\lambda_{D} = [\, (.020)(.29) + (.011) \, (4) \,] \, (3.1)(1) = .15 \, \text{Failure/10}^{6} \, \text{Hours}$$

Example 2: EEPROM

Given:

A 128K Flotox EEPROM that is expected to have a T_J of 80°C and experience 10,000 read/write cycles over the life of the system. The part is procured to all requirements of Paragraph 1.2.1, MIL-STD-883, Class B screening level requirements and has been in production for three years. It is packaged in a 28 pin DIP with a glass seal and will be used in an airborne uninhabited cargo application.

$$\pi_{\rm D} = (C_1 \, \pi_{\rm T} + C_2 \, \pi_{\rm E} + \lambda_{\rm cvc}) \, \pi_{\rm O} \, \pi_{\rm L}$$
 Section 5.2

C_1	=	.0034	Section 5.2
π_{T}	=	3.8	Section 5.8
Ca	=	.014	Section 5.9

5.13	MICROCIRCUITS,	EXAMPLES

π_{E}	=	5.0	Section 5.10
$\pi_{\mathbf{Q}}$	= '	5.0 2.0	Section 5.10
π_{L}		1.0	Section 5.10
_	: =	.38	Section 5.2:
		-	$\lambda_{\text{cyc}} = \left[A_1 \ B_1 + \frac{A_2 B_2}{\pi_Q} \right] \pi_{\text{ECC}}$ $A_2 = B_2 = 0 \text{ for Flotox}$ $Assume \text{ No ECC, } \pi_{\text{ECC}} = 1$ $A_1 = .1, 7K \le C \le 15K \text{ Entry}$ $B_1 = 3.8 \text{(Use Equation 1 at bottom of } B_1 \text{ and } B_2 \text{ Table)}$ $\lambda_{\text{cyc}} = A_1 \ B_1 = (.1)(3.8) = .38$

 $\lambda_{\rm D}$ = [(.0034)(3.8) + (.014)(5.0) + .38] (2.0)(1) = .93 Failures/10⁶ Hours

Example 3: GaAs MMIC

Given:

A MA4GM212 Single Pole Double Throw Switch, DC - 12 GHz, 4 transistors, 4 inductors, 8 resistors, maximum input P_D = 30 dbm, 16 pin hermetic flatpack, maximum T_{CH} = 145°C in a ground benign environment. The part has been manufactured for 1 year and is screened to Paragraph 1.2.1 of MIL-STD-883, Class B equivalent screen.

$$\lambda_{p} = [C_{1}\pi_{T}\pi_{A} + C_{2}\pi_{E}]\pi_{L}\pi_{Q}$$
 Section 5.4

U ₁	=	4.5	Section 5.4, MMIC Table, 4 Active Elements (See Foothote to
π_{T}	=	.061	Table) Section 5.8, T _J = T _{CH} = 145°C
π_{A}	=	3.0	Section 5.4, Unknown Application
C_2	=.	.0047	Section 5.9
πE	=	.50	Section 5.10
π_{L}	=	1.5	Section 5.10
π_{Q}	=	2.0	Section 5.10

$$\lambda_p = [(4.5)(.061)(3.0) + (.0047)(.5)](1.5)(2.0) = 2.5 \text{ Failures/}10^6 \text{ Hours}$$

NOTE: The passive elements are assumed to contribute negligibly to the overall device failure rate.

Example 4: Hybrid

Given:

A linear multichip hybrid driver in a hermetically sealed Kovar package. The substrate is alumina and there are two thick film dielectric layers. The die and substrate attach materials are conductive epoxy and solder, respectively. The application environment is naval unsheltered, 65°C case temperature and the device has been in production for over two years. The device is

5.13 MICROCIRCUITS, EXAMPLES

screened to MIL-STD-883, Method 5008, in accordance with Table VIII, Class B requirements. The hybrid contains the following components:

Active Components:

LM106 Bipolar Comparator/Buffer Die (13 Transistors)

- LM741A Bipolar Operational Amplifier Die (24 Transistors)

2 - Si NPN Transistor

2 - Si PNP Transistor

2 - Si General Purpose Diodes

Passive Components:

2 - Ceramic Chip Capacitors

17 - Thick Film Resistors

$$\lambda_{\rm D} = [\sum N_{\rm C} \lambda_{\rm C}] (1 + .2\pi_{\rm E}) \pi_{\rm F} \pi_{\rm Q} \pi_{\rm L}$$
 Section 5.5

1. Estimate Active Device Junction Temperatures

If limited information is available on the specific hybrid materials and construction characteristics the default case-to-junction temperature rises shown in the introduction to Section 5.12 can be used. When detailed information becomes available the following Section 5.12 procedure should be used to determine the junction-to-case (θ_{JC}) thermal resistance and T_J values for each component.

$$\theta_{JC} = \frac{\sum_{i=1}^{n} \left(\frac{1}{K_i}\right)(L_i)}{A}$$
 (Equation 1)

Layer	Figure 5-1 Feature		$\binom{\frac{1}{K_{i}}}{(in^2 °C/W)}$
Silicon Chip	Α		.0045
Conductive Epoxy	В .		.023
Two Dielectric Layers	. С	(2)(.0045) =	.009
Alumina Substrate	D		.039
Solder Substrate Attachment	Ε		.0023
Kovar Case	F		.048
		$\Sigma\left(\frac{1}{K_{i}}\right)(L_{i}) =$.1258

A = Die Area =
$$[.00278 \text{ (No. Die Active Wire Terminals)} + .0417]^2$$

(Equation 2)

$$T_J = T_C + \theta_{JC} P_D$$

(Equation 3)

5.13 MICROCIRCUITS, EXAMPLES

	LM106	LM741A	Si NPN	Si PNP	Si Diode	Source
No. of Pins	8	14	3	3	2	Vendor Spec. Sheet
Power Dissipation, P _D (W)	.33	.35	.6	.6	.42	Circuit Analysis
Area of Chip (in. ²)	.0041	.0065	.0025	.0025	.0022	Equ. 2 Above
θ ^{JC} (°C/W)	30.8	19.4	50.3	50.3	56.3	Equ. 1 Above
T _J (°C)	75	72	95	95	89	Equ. 3 Above

- 2. Calculate Failure Rates for Each Component:
 - A) LM106 Die, 13 Transistors (from Vendor Spec. Sheet)

$$\lambda_{D} = [C_{1} \pi_{T} + C_{2} \pi_{E}] \pi_{Q} \pi_{L}$$

Section 5.1

Because $C_2 = 0$;

$$\lambda_D = C_1 \pi_T \pi_Q \pi_L$$

 π_{T} : Section 5.8; π_{O} , π_{I} Default to 1.0

$$= (.01)(3.8)(1)(1) = .038$$
 Failures/10⁶ Hours

B) LM741 Die, 23 Transistors. Use Same Procedure as Above.

$$\lambda_p = C_1 \pi_T \pi_Q \pi_L = (.01)(3.1)(1)(1) = .031 \text{ Failures/} 10^6 \text{ Hours}$$

C) Silicon NPN Transistor, Rated Power = 5W (From Vendor Spec. Sheet), V_{CE}/V_{CEO} = .6, Linear Application

$$\lambda_{\rm p} = \lambda_{\rm b} \, \pi_{\rm T} \, \pi_{\rm A} \, \pi_{\rm R} \, \pi_{\rm S} \, \pi_{\rm Q} \, \pi_{\rm E}$$
 Section 6.3; $\pi_{\rm A}$, $\pi_{\rm Q}$, $\pi_{\rm E}$ Default to 1.0 = .0015 Failures/10⁶ Hours

D) Silicon PNP Transistor, Same as C.

$$\lambda_p = .0015 \text{ Failures}/10^6 \text{ Hours}$$

E) Silicon General Purpose Diode (Analog), Voltage Stress = 60%, Metallurgically Bonded Construction.

$$\lambda_{p} = \lambda_{b} \pi_{T} \pi_{S} \pi_{C} \pi_{Q} \pi_{E}$$

$$= (.0038)(6.3)(.29)(1)(1)(1)$$

$$= .0069 \text{ Failures/} 10^{6} \text{ Hours}$$

Section 6.1; π_Q , π_E Default to 1.0

MIL-HDBK-217F NOTICE 2

5.13 MICROCIRCUITS, EXAMPLES

F) Ceramic Chip Capacitor, Voltage Stress = 50%, $T_A = T_{CASF}$ for the Hybrid, 1340 pF, 125°C Rated Temp.

$$\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm CV} \pi_{\rm Q} \pi_{\rm E}$$
 Section 10.11; $\pi_{\rm Q}$, $\pi_{\rm E}$ Default to 1.0
= (.0028)(1.4)(1)(1)
= .0039 Failures/10⁶ Hours

G) Thick Film Resistors, per instructions in Section 5.5, the contribution of these devices is considered insignificant relative to the overall hybrid failure rate and they may be ignored.

Overall Hybrid Part Failure Rate Calculation:

$$\begin{array}{lll} \lambda_{\rm p} &=& \left[\sum N_{\rm C} \, \lambda_{\rm c} \, \right] (1 + .2 \, \pi_{\rm E}) \, \pi_{\rm F} \, \pi_{\rm Q} \, \pi_{\rm L} \\ \\ \pi_{\rm E} &=& 6.0 & {\rm Section 5.10} \\ \\ \pi_{\rm F} &=& 5.8 & {\rm Section 5.5} \\ \\ \pi_{\rm Q} &=& 1 & {\rm Section 5.10} \\ \\ \pi_{\rm L} &=& 1 & {\rm Section 5.10} \\ \\ \lambda_{\rm p} &=& \left[\, (1) (.038) + (1) (.031) + (2) \, (.0015) + (2) \, (.0015) \\ \\ &+& (2) (.0069) + (2) (.0039) \, \right] (1 + .2 (6.0)) \, (5.8) \, (1) (1) \end{array}$$

 $\lambda_p = 1.2 \text{ Failures/}10^6 \text{ Hours}$

6.0 DISCRETE SEMICONDUCTORS, INTRODUCTION

The semiconductor transistor, diode and opto-electronic device sections present the failure rates on the basis of device type and construction. An analytical model of the failure rate is also presented for each device category. The various types of discrete semiconductor devices require different failure rate models that vary to some degree. The models apply to single devices unless otherwise noted. For multiple devices in a single package the hybrid model in Section 5.5 should be used.

The applicable MIL specification for transistors, and optoelectronic devices is MIL-S-19500. The quality levels (JAN, JANTX, JANTXV) are as defined in MIL-S-19500.

The temperature factor (π_T) is based on the device junction temperature. Junction temperature should be computed based on worse case power (or maximum power dissipation) and the device junction to case thermal resistance. Determination of junction temperatures is explained in Section 6.14.

Reference 28 should be consulted for further detailed information on the models appearing in this section.

MIL-HDBK-217F NOTICE 2

6.1 DIODES, LOW FREQUENCY

SPECIFICATION MIL-S-19500

DESCRIPTION

Low Frequency Diodes: General Purpose Analog, Switching, Fast Recovery, Power Rectifier, Transient Suppressor, Current Regulator, Voltage Regulator, Voltage Reference

$\lambda_p = \lambda_b \pi_T \pi_S \pi_C \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

Diode Type/Application	λ _b
General Purpose Analog Switching Fast Recovery Power Rectifier Power Rectifier/Schottky Power Diode Power Rectifier with High Voltage Stacks Transient Suppressor/Varistor Current Regulator Voltage Regulator and Voltage Reference (Avalanche	.0038 .0010 .025 .0030 .0050/ Junction .0013 .0034 .0020
and Zener)	l

Temperature Factor - π_T

(General Purpose Analog, Switching, Fast Recovery, Power Rectifier, Transient Suppressor)

T _J (°C)	π _T	T _J (°C)	π_{\top}
25 30 35 40 45 50 55 60 65 70	1.0 1.2 1.4 1.6 1.9 2.2 2.6 3.0 3.4 3.9 4.4	105 110 115 120 125 130 135 140 145 150	9.0 10 11 12 14 15 16 18 20 21
80	5.0	160	25
85 90	5.7 6.4	165 170	28 30
95 100	7.2 8.0	175	32

$$\pi_{T} = \exp\left(-3091\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$$

 T_{1} = Junction Temperature (°C)

Temperature Factor - $\pi_{ extbf{T}}$

(Voltage Regulator, Voltage Reference, and Current Regulator)

		and Curre	ni Regulator)	
	T _J (°C)	π_{T}	T _J (°C)	n_{T}
	25 30 35 40 45 50 55 60 65 70 75 80 85 90	1.0 1.1 1.2 1.4 1.5 1.6 1.8 2.0 2.1 2.3 2.7 3.0 3.2 3.4	105 110 115 120 125 130 135 140 145 150 155 160 165 170	3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0 6.4 6.7 7.1 7.5 7.9 8.3 8.7
L	100	3.7		

$$\pi_{T} = \exp\left(-1925\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$$

T₁ = Junction Temperature (°C)

Document provided by IHS

6.1 DIODES, LOW FREQUENCY

Electrical Stress Factor - π_S

Transient Suppressor,	
Voltage Regulator, Voltage Reference, Current Regulator	1.0
All Others: $V_{S} \le .30$ $.3 < V_{S} \le .40$ $.4 < V_{S} \le .50$ $.5 < V_{S} \le .60$ $.6 < V_{S} \le .70$ $.7 < V_{S} \le .80$ $.8 < V_{S} \le .90$ $.9 < V_{S} \le 1.00$	0.054 0.11 0.19 0.29 0.42 0.58 0.77

For All Except Transient Suppressor, Voltage Regulator, Voltage Reference, or Current Regulator

$$\pi_{s} = .054$$
 $(V_{s} \le .3)$
 $\pi_{s} = V_{s}^{2.43}$ $(.3 < V_{s} \le 1)$

 V_S = Voltage Stress Ratio = $\frac{\text{Voltage Applied}}{\text{Voltage Rated}}$

Voltage is Diode Reverse Voltage

Contact Construction Factor - π_C

Contact Construction	π_{C}
Metallurgically Bonded	1.0
Non-Metallurgically Bonded and Spring Loaded Contacts	2.0

Quality Factor - π_{O}

Quality	π_{Q}
JANTXV	0.7
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

Environment Factor - π_{F}

E				
Environment	π _E			
G_B	1.0			
G _F	6.0			
G _M	9.0			
N _S	9.0			
N _U	19			
A _{IC}	13			
A _{IF}	29			
A _{UC} ·	20			
A _{UF}	43			
A _{RW}	24			
S _F	.50			
M _F	14			
ML	32			
င	320			

6.2 DIODES, HIGH FREQUENCY (MICROWAVE, RF)

SPECIFICATION

MIL-S-19500

DESCRIPTION

Si IMPATT; Bulk Effect, Gunn; Tunnel, Back; Mixer, Detector, PIN, Schottky; Varactor, Step Recovery

$$\lambda_p = \lambda_b \pi_T \pi_A \pi_R \pi_Q \pi_E \quad \text{Failures/106 Hours}$$

Base Failure Rate - λ_b

Diode Type	λ _b
Si IMPATT (≤ 35 GHz) Gunn/Bulk Effect Tunnel and Back (Including Mixers, Detectors) PIN Schottky Barrier (Including Detectors) and Point Contact (200 MHz ≤ Frequency ≤ 35 GHz) Varactor and Step Recovery	.22 .18 .0023 .0081

Temperature Factor - π_T

(All Types Except IMPATT)					
π_{T}	T _J (°C)	π _T			
1.0 1.1 1.3 1.4 1.7 1.9 2.3 2.8 3.3 3.5 3.5 4.1	105 110 115 120 125 130 135 140 145 150 155 160 165 170	4.4 4.8 5.1 5.5 5.9 6.3 6.7 7.1 7.6 8.0 8.5 9.0 9.5			
$\pi_{\text{T}} = \exp\left(-2100\left(\frac{1}{T_{\text{J}} + 273} - \frac{1}{298}\right)\right)$					
	1.0 1.1 1.3 1.4 1.6 1.7 1.9 2.1 2.3 2.5 2.8 3.0 3.3 3.5 3.8 4.1	1.0 105 1.1 110 1.3 115 1.4 120 1.6 125 1.7 130 1.9 135 2.1 140 2.3 145 2.5 150 2.8 155 3.0 160 3.3 165 3.5 170 3.8 175 4.1			

Junction Temperature (°C)

Temperature Factor- π_T

(IMPATT)						
⊤ൃ (℃)	π_{T}	T _J (°C)	π_{T}			
25 30 35 40 45 50 55 60 65 70 75 80 95 90 95	1.3 1.8 2.9 3.9 5.4 10 13 16 19 24 29 35	105 110 115 120 125 130 135 140 145 150 155 160 165 170	42 50 60 71 84 99 120 140 160 210 250 280 320 370			
$\pi_{T} = \exp\left(-5260\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$						
T _J = Junction Temperature (°C)						

Application Factor - π_A

Diodes Application	π_{A}
Varactor, Voltage Control	.50
Varactor, Multiplier	2.5
All Other Diodes	1.0

DIODES, HIGH FREQUENCY (MICROWAVE, RF)

Power Rating Factor - π_R

Rated Power, Pr (Watts)	π _R
PIN Diodes	
P _r ≤ 10	.50
$10 < P_r \le 100$	1.3
$100 < P_r \le 1000$	2.0
1000 < P _r ≤ 3000	2.4
All Other Diodes	1.0
PIN Diodes $\pi_{R} = .326 \ln(P_{r})25$	
All Other Diodes $\pi_R = 1.0$	

Quality Factor - π_Q

(All Types Except Schottky)

Quality *	π _Q
JANTXV	.50
JANTX	1.0
JAN	5.0
Lower	25
Plastic	50

For high frequency part classes not specified to MIL-S-19500 equipment quality classes are defined as devices meeting the same requirements as MIL-S-19500.

Quality Factor - π_Q (Schottky)

Quality*	π _Q
JANTXV	.50
JANTX	1.0
JAN	1.8
Lower	2.5
Plastic	

For high frequency part classes not specified to MIL-S-19500 equipment quality classes are defined as devices meeting the same requirements as MIL-S-19500.

Environment Factor - π_E

Environment	πΕ
. G _B	1.0
. G _F	2.0
G _M	5.0
N _S	4.0
N _U	11
AIC	4.0
A _{IF}	5.0
AUC	7.0
A _{UF}	12
A _{RW}	16
S _F	50
M _F	9.0
ML	24
CL	250

TRANSISTORS, LOW FREQUENCY, BIPOLAR

SPECIFICATION MIL-S-19500

DESCRIPTION

NPN (Frequency < 200 MHz) PNP (Frequency < 200 MHz)

$\lambda_p = \lambda_b \pi_T \pi_A \pi_R \pi_S \pi_Q \pi_E \quad \text{Failures/10}^6 \ \text{Hours}$

Base Failure Rate - λ_h

Туре	λ _b
NPN and PNP	.00074

Application Factor - π_A

Application	π_{A}
Linear Amplification	1.5
Switching	.70

	l emperature Factor - π _T		
T _J (°C)	π _T	ТЈ (℃)	π _T
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	1.0 1.1 1.3 1.6 1.7 1.9 1.3 2.5 2.8 3.3 3.9 4.2	105 110 115 120 125 130 135 140 145 150 155 160 165 170	4.5 4.8 5.6 5.9 6.8 7.2 7.7 8.1 8.6 9.7
		<u> </u>	

$$\pi_{T} = \exp\left(-2114\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$$
 $T_{J} = \text{Junction Temperature (°C)}$

Power Rating Factor - π_{R}

π _R	
12	
.43	
.77	
1.0	
1.8	
2.3	
4.3	
5.5	
10	
Rated Power ≤ .1W).37 Rated Power > .1W	

6.3 TRANSISTORS, LOW FREQUENCY, BIPOLAR

Voltage Stress Factor - π_S

Applied VCE/Rated VCEO	πS
0 < V _s ≤ .3 .3 < V _s ≤ .4 .4 < V _s ≤ .5	.11 .16 .21
.5 < V _s ≤ .6	29
.6 < V _s ≤ .7	.39
.7 < V _s ≤ .8	.54
.8 < V _s ≤ .9	.73
.9 < V _s ≤ 1.0	1.0
π _S = .045 exp (3.1(Vs)) (0 < V _s ≤ 1.0)
V _s = Applied V _{CE} / Rated V _{CEO}	
V _{CE} = Voltage, Collector to Emitter	
V _{CEO} = Voltage, Collector to Emitter, Base Open	

Environment Factor - π_E

Environment	πE
G _B	1.0
G_{F}	6.0
G _M	9.0
N _S	9.0
N _U	19
A _{IC}	13
A _{IF}	29
A _{UC} .	20
· A _{UF}	43
A _{RW}	24
S _F	.50
M _F	14
ML	32
CL	320

Quality Factor - π_Q

Quality	π_{Q}
JANTXV	.70
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

6.4 TRANSISTORS, LOW FREQUENCY, SI FET

SPECIFICATION MIL-S-19500

DESCRIPTION

N-Channel and P-Channel Si FET (Frequency ≤ 400 MHz)

$$\lambda_p = \lambda_b \pi_T \pi_A \pi_Q \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b

Transistor Type	λ _b
MOSFET	.012
JFET	.0045
· '	

Temperature Factor - π_T

T _J (°C)	π_{T}	T _J (°C)	π_{T}
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	1.0 1.1 1.2 1.4 1.5 1.6 1.8 2.0 2.1 2.3 2.5 2.7 3.2 3.4 3.7	105 110 115 120 125 130 135 140 145 150 155 160 165 170	3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0 6.4 6.7 7.5 7.9 8.3 8.7
$\pi_{\rm T} = \exp\left(-1925\left(\frac{1}{\pi - 970} - \frac{1}{200}\right)\right)$			

$$\pi_{T} = \exp\left(-1925\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$$

 T_J = Junction Temperature (°C)

Quality Factor - π_Q

Quality	πQ
JANTXV	.70
JANTX	1,0
JAN	2.4
Lower	5,5
Plastic	8.0

Application Factor - π_{Δ}

Application (P _r , Rated Output Power)	. ^π A	
Linear Amplification (P _r < 2W)	1.5	
Small Signal Switching	.70	
Power FETs (Non-linear, P _r ≥ 2W)	•	
2 ≤ P _r < 5W	2.0	
5 ≤ P _r < 50W	4.0	
50 ≤ P _r < 250W	8.0	
P _r ≥ 250W	10	

Environment Factor - π_{F}

Environment	π _E
G _B	1.0
G _F	6.0
G _M	9.0
NS	9.0
NU	19
	13
A _{IC} A _{IF}	29
A _{UC}	20
A _{UF}	43
A _{RW}	24
S _F	.50
M _F	14
ML	32
Mլ Cլ	320

6.5 TRANSISTORS, UNIJUNCTION

SPECIFICATION MIL-S-19500

DESCRIPTIONUnijunction Transistors

$\lambda_p = \lambda_b \pi_T \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

Туре	λ _b	
All Unijunction	.0083	

Temperature Factor - π_{T}

		***	<u> </u>
T _J (°C)	π _T	T _J (°C)	π_{T}
25 30 35 40 45 50 55 60 75 80 85 90 95	1.0 1.1 1.3 1.5 1.7 1.9 2.4 2.7 3.3 3.7 4.0 4.9 5.3	105 110 115 120 125 130 135 140 145 150 165 170 175	5.8 6.9 7.5 8.8 9.5 10 11 12 13 14 15 16
$\pi_{T} = \exp\left(-2483\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$			
T =	T ₁ = Junction Temperature (°C)		

Quality Factor - π_Q

Quality	π_{Q}
JANTXV	.70
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

Environment Factor - π_F

Environment	πΕ
G _B	1.0
G _F .	6.0
G _M	9.0
N _S	9.0
NU	19
A _{IC}	13
A _{IF}	29
A _{UC}	20
. A _{UF}	43
A _{RW}	24
S _F	.50
M _F	14
ML	32
c _L	320

TRANSISTORS, LOW NOISE, HIGH FREQUENCY, BIPOLAR

SPECIFICATION MIL-S-19500

DESCRIPTION

Bipolar, Microwave RF Transistor (Frequency > 200 MHz, Power < 1W)

$$\lambda_p = \lambda_b \pi_T \pi_R \pi_S \pi_Q \pi_E$$
 Failures/10⁶ Hours

Application Note: The model applies to a single die (for multiple die use the hybrid model). The model does apply to ganged transistors on a single die.

Base Failure Rate - λ.

שלי יישור יושוט ו שטער		
Type		λ _b
All Types		.18

Temperature Factor - π-

Temperature Factor - π _T			
T _J (°C)	π _T	Т၂ (℃)	π _T
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	1.0 1.1 1.4 1.6 1.7 1.9 2.3 2.8 2.9 3.6 3.9 4.2	105 110 115 120 125 130 135 140 145 150 155 160 165 170 175	4.5 4.8 5.6 5.9 6.8 7.2 7.7 8.1 8.6 9.1 9.7
π _T =	$\pi_{T} = \exp\left(-2114\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$		
T _J =	T _{.I} = Junction Temperature (°C)		

Power Rating Factor - π_{R}

Rated Power (Pr, Watts)	π _R
$P_r \le .1$ $.1 < P_r \le .2$ $.2 < P_r \le .3$ $.3 < P_r \le .4$ $.4 < P_r \le .5$ $.5 < P_r \le .6$ $.6 < P_r \le .7$ $.7 < P_r \le .8$.43 .55 .64 .71 .77 .83 .88
.8 < P _r ≤ .9 π _B = .43	.96 P _r ≤.1W
$\pi_{\mathbf{R}} = (\mathbf{P_r})^{.37}$	P _r > .1W

Voltage Stress Factor - π_S

Applied VCE/Rated VCEO	π_{S}
0 < V _s ≤ .3	.11
.3 < V _S ≤ .4	.16
.4 < V _s ≤ .5	.21
.5 < V _s ≤ .6	.29
.6 < V _s ≤ .7	.39
.7 < V _s ≤ .8	.54
.8 < V _s ≤ .9	.73
.9 < V _s ≤ 1.0	1.0

= .045 exp (3.1(Vs)) $(0 < V_g \le 1.0)$

Applied VCE / Rated VCEO

Voltage, Collector to Emitter

Voltage, Collector to Emitter, Base Open

6.6 TRANSISTORS, LOW NOISE, HIGH FREQUENCY, BIPOLAR

Quality Factor - π_O

πQ
.50
1.0
2.0
5.0

NOTE: For these devices, JANTXV quality class must include IR Scan for die attach and screen for barrier layer pinholes on gold metallized devices.

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	2.0
G _M	5.0
N _S	4.0
N _U	11
A _{IC} •	4.0
A _{IF}	5.0
AUC	7.0
A _{UF}	12
A _{RW}	16
S _F	.50
M _F	. 9.0
ML	24
M _{L.} C _L	250

TRANSISTORS, HIGH POWER, HIGH FREQUENCY, BIPOLAR

SPECIFICATION MIL-S-19500

DESCRIPTION

Power, Microwave, RF Bipolar Transistors (Average Power ≥ 1W)

$$\lambda_p = \lambda_b \pi_T \pi_A \pi_M \pi_Q \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λh

Frequency				Outpu	t Power (W	atts)				
(GHz)	1.0	5.0	10	50	100	200	300	400	500	600
≤ 0.5	.038	.039	.040	.050	.067	.12	.20	.36	.62	1,1
1	.046	.047	,048	.060	.080	.14	.24	.42	.74	1.3
2	.065	.067	.069	.086	.11	.20	,35			
3	.093	.095	.098	.12	,16	.28	•			
4	.13	.14	.14	.17	.23					
5	.19	.19	.20	.25						

 $.032 \exp(.354(F) + .00558(P))$

Frequency (GHz)

Output Power (W)

NOTE: Output power refers to the power level for the overall packaged device and not to individual transistors within the package (if more than one transistor is ganged together). The output power represents the power output from the active device and should not account for any duty cycle in pulsed applications. Duty cycle is accounted for when determining π_A .

Temperature Factor - π_T

(Gold Metallization)

		1	V _s (VCE/E	3VCES)	
_	T _J (°C)	≤ .40	.45	.50	.55
_	≤100	.10	.20	.30	.40
	110	.12	.25	.37	.49
	120	.15	.30	.45	.59
	130	.18	.36	.54	.71
	140	.21	· .43	.64	.85
	150	.25	.50	.75	1.0
	160	.29	.59	.88	1.2
	170	.34	.68 ·	1.0	1.4
	180	.40	.79	1.2	1.6
	190	.45	.91	1.4	1.8
_	200	.52	1.0	1.6	2.1
_					

$$\pi_{T} = .1 \exp\left(-2903 \left(\frac{1}{T_{J} + 273} - \frac{1}{373}\right)\right),$$

$$(V_{S} \le .40)$$

$$\pi_{T} = 2 (V_{s} - .35) \exp \left(-2903 \left(\frac{1}{T_{J} + 273} - \frac{1}{373}\right)\right),$$

$$(.4 < V_{s} \le .55)$$

٧, - VCE / BVCES

Operating Voltage (Volts) **VCE**

BVCES Collector-Emitter Breakdown Voltage with Base Shorted to Emitter (Volts)

Peak Junction Temperature (°C) Tj

Temperature Factor - π_T

(Aluminum Metallization)

				···.		
	V _s (VCE/BVCES)					
T _J (°C)	≤ .40	.45	.50	.55		
≤100	.38	.75	1.1	1.5		
110	.57	1.1	1.7	2.3		
120	. ,84	1.7	2.5	3.3		
130	1.2	2.4	3.6	4.8		
140	1.7	3.4	5.1	6.8		
150	2.4	4.7	7.1	9.5		
160	3.3	6.5	9.7	13		
170	4.4	8,8	13	18		
180	5.9	12	18	23		
190	7.8	15	23	31		
200	10	20	30	40		

$$\pi_{T} = .38 \exp\left(-5794 \left(\frac{1}{T_{J} + 273} - \frac{1}{373}\right)\right),$$

$$(V_{a} \le .40)$$

$$\pi_{T} = 7.55 (V_{s} - .35) \exp \left(-5794 \left(\frac{1}{T_{J} + 273} - \frac{1}{373} \right) \right)$$

$$(.4 < V_{s} \le .55)$$

VCE / BVCES ٧s

Operating Voltage (Volts) **VCE**

BVCES Collector-Emitter Breakdown Voltage with Base Shorted to Emitter (Volts)

Peak Junction Temperature (°C) T_{J}

6.7 TRANSISTORS, HIGH POWER, HIGH FREQUENCY, BIPOLAR

Application Factor - π_A

Application	Duty Factor	πA	
CW	N/A	7.6	
Pulsed	≤ 1% 5% 10% 15% 20% 25% ≥ 30%	.46 .70 1.0 1.3 1.6 1.9 2.2	

 π_{Δ} = 7.6, CW

 π_A = .06 (Duty Factor %) + .40 , Pulsed

Matching Network Factor - π_M

Matching .	π_{M}
Input and Output	1.0
Input	2.0
None	4.0

Quality Factor - π_Q

Quality	π_{Q}
JANTXV	.50
JANTX	1.0
JAN	2.0
Lower	5.0

NOTE: For these devices, JANTXV quality class must include IR Scan for die attach and screen for barrier layer pinholes on gold metallized devices. •

Environment Factor - π_F

Environment	π _E
G _B	1.0
G _F	2.0
G _M	5.0
N _S	4.0
N _U	11
	4.0
A _{IC} A _{IF}	5.0
Auc	7.0
A _{UF}	12
A _{RW}	16
S _F	.50
M _F	9.0
M _L Cլ	24
CL	250

TRANSISTORS, HIGH FREQUENCY, GaAs FET

SPECIFICATION MIL-S-19500

GaAs Low Noise, Driver and Power FETs (≥ 1GHz)

$$\lambda_p = \lambda_b \pi_T \pi_A \pi_M \pi_Q \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b

Operating	Average Output Power (Watts)						
Frequency (GHz)	<.1	.1	5	1	2	4	6
1	.052						
4	.052	.054	.066	.084	.14	.36	.96
5	.052	.083	.10	.13	.21	.56	1.5
6	.052	.13	.16	.20	.32	.85	2.3
7	.052	.20	.24	.30	.50	1.3	3.5
8	.052	.30	.37	.47	· .76	2.0	
9	.052	.46	.56	.72	1.2	-	
10	.052	.71	.87	1.1	1.8		

.052

1≤F≤10, P<.1

.0093 exp(.429(F) + .486(P))

.1≤P≤6 $4 \le F \le 10$,

Frequency (GHz)

Average Output Power (Watts)

The average output power represents the power output from the active device and should not account for any duty cycle in pulsed applications.

Temperature Factor - π-

remperature ractor - 117						
T _C (°C)	π_{T}	T _C (°C)	π_{T}			
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100	1.0 1.3 1.6 2.6 2.0 4.9 5.9 7.2 8.7 10 11 11 11 11 11 11 11	105 110 115 120 125 130 135 140 145 150 155 160 165 170	24 28 33 38 44 50 58 66 75 85 97 110 120 140 150			
$\pi_{\text{T}} = \exp\left(-4485\left(\frac{1}{T_{\text{C}} + 273} - \frac{1}{298}\right)\right)$						
T _C ≈	T _C = Channel Temperature (°C)					

Application Factor - π_A

Application (P ≤ 6W)	π_{A}
All Low Power and Pulsed	1
cw	4

P = Average Output Power (Watts)

MIL-HDBK-217F NOTICE 1

6.8 TRANSISTORS, HIGH FREQUENCY, GaAS FET

Matching Network Factor - π_M

Matching	π_{M}
Input and Output	1.0
Input Only	2.0
None	4.0

Quality Factor - π_{O}

Quality	πQ
JANTXV	.50
JANTX	1.0
JAN	2.0
Lower	5.0

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	2.0
G _M	5.0
N _S	4.0
N _U	11
A _{IC}	4.0
A _{IF}	5.0
A _{UC}	7.0
A _{UF}	12
A _{RW}	16
S _F	.50
M _F	9.0
ML	24
CL	250

6.9 TRANSISTORS, HIGH FREQUENCY, SI FET

SPECIFICATION

MIL-S-19500

DESCRIPTION

Si FETs (Avg. Power < 300 mW, Freq. > 400 MHz)

$$\lambda_p = \lambda_b \pi_T \pi_Q \pi_E \quad \text{Failures/10}^6 \text{ Hours}$$

Base Failure Rate - λ_h

	<u> </u>
Transistor Type	λ _b
MOSFET	.060
JFET	.023

Temperature Factor - π_{T}

T _J (°C)	π _T	T _J (°C)	π _T
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	1.0 1.1 1.4 1.6 1.8 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	105 110 115 120 125 130 135 140 145 150 155 160 165 170	3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.4 6.7 7.1 7.5 7.9 8.3 8.7
$\pi_{T} = \exp\left(-1925\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$			
T _J = Junction Temperature (°C)			

Quality Factor - π_{O}

Quality	π_{Q}
JANTXV	.50
JANTX	1.0
JAN	2.0
Lower	5.0
L	

Environment Factor - $\pi_{\rm F}$

	~E
Environment	π _E
G _B	1.0
G _F	2.0
G _M	5.0
N _S	4.0
N _U	11
A _{IC}	4.0
A _{IF}	5.0
Auc	7.0
A _{UF}	12
A _{RW}	16
s _F	.50
MF	9.0
ML	24
CL	250

6.10 THYRISTORS AND SCRS

SPECIFICATION MIL-S-19500 DESCRIPTION Thyristors SCRs, Triacs

$\lambda_p = \lambda_b \pi_T \pi_R \pi_S \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Device Type	λ _b
All Types	.0022

Temperature Factor - π_T

25 1.0 105 8.9 30 1.2 110 9.9 35 1.4 115 11 40 1.6 120 12 45 1.9 125 13 50 2.2 130 15 55 2.6 135 16 60 3.0 140 18 65 3.4 145 19 70 3.9 150 21 75 4.4 155 23 80 5.0 160 25 85 5.7 165 27 90 6.4 170 30 95 7.2 175 32 100 8.0
100 8.0

$$\pi_{T} = \exp\left(-3082\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$$

T_J = Junction Temperature (°C)

Current Rating Factor - π_R

Rated Forward Current (I _{frms} (Amps))	π_{R}
.05 .10 .50 1.0 5.0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 175	.30 .40 .76 1.9 2.5 3.9 4.8 5.1 5.5 6.0 6.8 7.2 7.4 7.8 7.9
π _R = (l _{frms}).40	10
I I = RMS Rated Forwa	rd Current (Amns)

I_{frms} = RMS Rated Forward Current (Amps)

6.10 THYRISTORS AND SCRS

Voltage Stress Factor - π_S

Voltago Otroco i actor	
V _s (Blocking Voltage Applied/	-
Blocking Voltage Rated)	π _S
V _s ≤ .30 .3 < V _s ≤ .4	.10 .18
$.4 < V_S \le .5$.27
.5 < V _S ≤ .6	.38
.6 < V _S ≤ .7	.51
.7 < V _S ≤ .8	.65
.8 < V _S ≤ .9	.82
.9 < V _S ≤ 1.0	1.0
π _S = .10	(V _S ≤ 0.3)
$\pi_{S} = (V_{s})^{1.9}$	(V _s > 0.3)

Quality Factor - π_Q

Quality	π _Q
JANTXV	0.7
JANTX	1.0
JAN ·	2.4
Lower	5.5
Plastic	8.0

Environment Factor - π_{F}

	<u> </u>
Environment	π _E
G _B	1.0
G _F	6.0
G _M	9.0
N _S	9.0
N _U	19
	13
A _{IC} A _{IF}	29
AUC	20
A _{UF}	43
A _{RW}	24
S _F	.50
MF	14
ML	32
M _L C _L	320

6.11 OPTOELECTRONICS, DETECTORS, ISOLATORS, EMITTERS

SPECIFICATION MIL-S-19500

DESCRIPTION

Photodetectors, Opto-isolators, Emitters

$\lambda_p = \lambda_b \pi_T \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

20001 411010 11010 110			
Optoelectronic Type	λ _b		
Photodetectors Photo-Transistor	.0055		
Photo-Diode	.0040		
Opto-Isolators Photodiode Output, Single Device	.0025		
Phototransistor Output, Single Device	.013		
Photodarlington Output, Single Device	.013		
Light Sensitive Resistor, Single Device	.0064		
Photodiode Output, Dual Device	.0033		
Phototransistor Output, Dual Device	.017		
Photodarlington Output, Dual Device	.017		
Light Sensitive Resistor, Dual Device	.0086		
Emitters Infrared Light Emitting Diode (IRLD) Light Emitting Diode (LED)	.0013 .00023		

Temperature Factor - π_T

T _J (°C)	π _T	T _{J.} (°C)	π _T	
25 30 35 40 45 50 55 60 65 70	1.0 1.2 1.4 1.6 1.8 2.1 2.4 2.7 3.0 3.4	75 80 85 90 95 100 105 110	3.8 4.3 4.8 5.3 5.9 6.6 7.3 8.8	
$\pi_{T} = \exp\left(-2790\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$ $T_{J} = \text{Junction Temperature (°C)}$				

Quality Factor - π_Q

Quality	π_{Q}
JANTXV	.70
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

Environment Factor - $\pi_{\rm F}$

Environment	π _E
G _B .	1:0
G _F	2.0
G _M	8.0
N _S	5.0
N _U	12
A _{IC}	4.0
A _{IF}	6.0
Auc	6.0
AUF	8.0
A _{RW}	17
S _F	.50
M _F	9.0
ML	24
CL	450

6.12 OPTOELECTRONICS, ALPHANUMERIC DISPLAYS

SPECIFICATION MIL-S-19500

DESCRIPTIONAlphanumeric Display

$$\lambda_p = \lambda_b \pi_T \pi_Q \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b

Number	λ _ι ,	λh
of	Segment	Diode Array
Characters	Display	Display
1	.00043	.00026
1 w/Logic Chip	.00047	.00030
2	.00086	.00043
2 w/Logic Chip	.00090	,00047
3	.0013 .	.00060
3 w/Logic Chip	.0013	.00064
4	.0017	.00077
4 w/Logic Chip	.0018	.00081
5	.0022	,00094
6	.0026	.0011
7	.0030	.0013
8	.0034	.0015
9	.0039	.0016
10	.0043	.0018
11	.0047	.0020
12	.0052	.0021
13	.0056	.0023
14	.0060	.0025
15	.0065	.0026

 $\lambda_{b} = .00043(C) + \lambda_{1C}$, for Segment Displays

 λ_{b} = .00009 + .00017(C) + λ_{IC} , Diode Array Displays

C = Number of Characters

= 0.0 for Displays without Logic Chip

NOTE: The number of characters in a display is the number of characters contained in a <u>single</u> sealed package. For example, a 4 character display comprising 4 separately packaged single characters mounted together would be 4-one character displays, not 1-four character display.

Quality Factor - π_Q

Quality	πQ
JANTXV	0.7
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

Temperature Factor - π_T

T _J (°C)	π_{T}	T _J (℃)	π_{T}
25 30 35 40 45 50 55 60 65 70	1.0 1.2 1.4 1.6 1.8 2.1 2.4 2.7 3.0 3.4	75 80 85 90 95 100 105 110	3.8 4.8 5.3 5.9 6.6 7.3 8.8
$\pi_{\text{T}} = \exp\left(-2790\left(\frac{1}{T_{\text{J}} + 273} - \frac{1}{298}\right)\right)$			
T _J = Junction Temperature (°C)			

Environment Factor - π₌

	"E
Environment	πΕ
G _B	1.0
G _F	2.0
G _M	8.0
N _S	5.0
N _U	12
A _{IC}	4.0
A _{IC} A _{IF}	. 6.0
A _{UC}	6.0 ·
A _{UF}	8.0
A _{RW}	. 17
S _F	.50
M _F	9.0
M _L C _L	24
CL	450

6.13 OPTOELECTRONICS, LASER DIODE

SPECIFICATION MIL-S-19500

DESCRIPTION

Laser Diodes with Optical Flux Densities
< 3 MW/cm² and Forward Current < 25 amps

$$\lambda_p = \lambda_b \pi_T \pi_Q \pi_I \pi_A \pi_P \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_h

λ _b
3.23
5.65

Temperature Factor - π_T

T _J (°C) π _T 25 30 30 1.3 35 1.7 40 2.1 45 2.7 50 3.3 55 4.1 60 65 6.3
30 1.3 35 1.7 40 2.1 45 2.7 50 3.3 55 4.1 60 5.1 65 6.3
70 7.7 75 9.3

$$\pi_{\text{T}} = \exp\left(-4635\left(\frac{1}{\text{T}_{\text{J}} + 273} - \frac{1}{298}\right)\right)$$

$$T_{\text{J}} = \text{Junction Temperature (°C)}$$

Quality Factor - π_Q

Quality	πQ
Hermetic Package	1.0
Nonhermetic with Facet Coating	1.0
Nonhermetic without Facet Coating	3.3

Forward Current Factor, π_1

Forward Peak Current (Amps)	$\pi_{ }$
.050	0.13
.075	0.17
.1	0.21
.5	0.62
1.0	1.0
2.0	1.6
3.0	2.1
4.0	2.6
5.0	3.0
10	4.8
15	6.3
20	7.7
25	8.9

 $\pi_{l} = (l)^{.68}$

I = Forward Peak Current (Amps), I ≤ 25

NOTE: For Variable Current Sources, use the Initial Current Value.

Application Factor π_A

		<u> </u>
Application	Duty Cycle	π_{A}
CW		4.4
Pulsed	1	.32
	.2	.45
	.3	.55
	.4	.63
	.5	.71
	.6	.77
	.7	.84
	.8	.89
	.9	.95
	1.0	1.00

 $\pi_{A} = 4.4$, CW

 π_A = Duty Cycle ^{0.5}, Pulsed

NOTE: A duty cycle of one in pulsed application represents the maximum amount it can be driven in a pulsed mode. This is different from continuous wave application which will not withstand pulsed operating levels on a continuous basis.

6.13 OPTOELECTRONICS, LASER DIODE

Power Degradation Factor - π_{P}

Ratio P _r /P _s	π_{P}
0.00 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85	.50 .53 .56 .59 .67 .71 .77 .83 .91 1.0 1.3 1.4 1.7 2.5 3.0 10

$$\pi_{P} = \frac{1}{2(1 - \frac{Pr}{Ps})}$$
 $0 < \frac{Pr}{Ps} \le .95$

P_S = Rated Optical Power Output (mW)

Pr = Required Optical Power Output (mW)

NOTE: Each laser diode must be replaced when power output falls to Pr for failure rate prediction to be valid.

Environment Factor - π_E

	~E
Environment	π _E
G _B	1.0
Ġ _F	2.0
G _M	8.0
N _S	5.0
N _U	12
A _{IC}	4.0
A _{IF}	6.0 ·
A _{UC}	6.0
A _{UF}	8.0
A _{RW}	17
S _F	.50
M _F	9.0
M _L	24
M _L C _L	450

6.14 DISCRETE SEMICONDUCTORS, T. DETERMINATION

Ideally, device case temperatures should be determined from a detailed thermal analysis of the equipment. Device junction temperature is then calculated with the following relationship:

$$T_{.1} = T_{.C} + \theta_{.IC}P$$

where:

T₁ = Junction Temperature (°C)

T_C = Case Temperature (°C). If no thermal analysis exists, the default case temperatures shown in Table 6-1 should be assumed.

 θ_{JC} = Junction-to-Case Thermal Resistance (°C/W). This parameter should be determined from vendor, military specification sheets or Table 6-2, whichever is greater. It may also be estimated by taking the reciprocal of the recommended derating level. For example, a device derating recommendation of .16 W/°C would result in a θ_{JC} of 6.25 °C/W. If θ_{JC} cannot be determined assume a θ_{JC} value of 70°C/W.

P = Device Worse Case Power Dissipation (W)

The models are not applicable to devices at overstress conditions. If the calculated junction temperature is greater than the maximum rated junction temperature on the MIL slash sheets or the vendor's specifications, whichever is smaller, then the device is overstressed and these models ARE NOT APPLICABLE.

Table 6-1: Default Case Temperatures (T_C) for All Environments

Environment	T _C (°C)
G _B G _F G _M	35
G _F	45
G _M	50
N _S	45
NS US	50
A _{IC} A _{IF}	60
A _{IF}	60
A _{UC} A _{UF}	75
A _{UF}	75
A _{RW}	60
s _f	35
M _F	50
ML	60
CL	45

6.14 DISCRETE SEMICONDUCTORS, TJ DETERMINATION

Table 6-2: Approximate Junction-to-Case Thermal Resistance (θ_{JC}) for Semiconductor Devices in Various Package Sizes*

Package Type	θJC (°C/W)	Package Type	θJC (°C/W)
TO-1 TO-3 TO-5 TO-8 TO-9 TO-12 TO-18 TO-28 TO-33 TO-39 TO-41 TO-44 TO-46 TO-52 TO-53 TO-57 TO-59 TO-60 TO-61 TO-63 TO-66 TO-71 TO-72 TO-83 TO-89 TO-92 TO-94 TO-99 TO-126 TO-127 TO-204 TO-204 TO-204AA	70 10 70 70 70 70 70 70 70 70 70 70 70 70 70	TO-205AD TO-205AF TO-220 DO-4 DO-5 DO-7 DO-8 DO-9 DO-13 DO-14 DO-29 DO-35 DO-41 DO-45 DO-205AB PA-42A,B PD-36C PD-50 PD-77 PD-180 PD-319 PD-262 PD-975 PD-280 PD-216 PT-2G PT-6B PH-13 PH-16 PH-56 PY-58 PY-373	70 70 5 5 5 10 5 10 10 10 10 10 70 70 70 70 70 70 70 70 70 70 70 70

^{*}When available, estimates must be based on military specification sheet or vendor values, whichever θ_{JC} is higher.

6.15 DISCRETE SEMICONDUCTORS, EXAMPLE

Example

Given:

Silicon dual transistor (complementary), JAN grade, rated for 0.25 W at 25°C, one side only, and 0.35 W at 25°C, both sides, with T_{max} = 200°C, operating in linear service at 55°C case temperature in a sheltered naval environment. Side one, NPN, operating at 0.1 W and 50 percent of rated voltage and side two, PNP, operating at 0.05 W and 30 percent of rated voltage. The device operates at less than 200 MHz.

Since the device is a bipolar dual transistor operating at low frequency (<200 MHz), it falls into the Transistor, Low Frequency, Bipolar Group and the appropriate model is given in Section 6.3. Since the device is a dual device, it is necessary to compute the failure rate of each side separately and sum them together. Also, since θ_{JC} is unknown, $\theta_{JC} = 70^{\circ}\text{C/W}$ will be assumed.

Based on the given information, the following model factors are determined from the appropriate tables shown in Section 6.3.

$$\lambda_p$$
 = (.00074)(2.2)(1.5)(.68)(.21)(2.4)(9) + (.00074)(2.1)(1.5)(.68)(.11)(2.4)(9)
= .011 Failures/10⁶ Hours

7.1 TUBES, ALL TYPES EXCEPT TWT AND MAGNETRON

DESCRIPTION

All Types Except Traveling Wave Tubes and Magnetrons. Includes Receivers, CRT, Thyratron, Crossed Field Amplifier, Pulsed Gridded, Transmitting, Vidicons, Twystron, Pulsed Klystron, CW Klystron

 $\lambda_p = \lambda_b \pi_L \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

(Includes Both Random and Wearout Failures)

	<u> 30th Random</u>	and Wearout Failures)	
Tube Type	λ _b	Tube Type	λ _b
Receiver		Klystron, Low Power,	
Triode, Tetrode, Pentode	5.0	(e.g. Local Oscillator)	30
Power Rectifier	10	,	
CRT	9.6	Klystron, Continuous Wave*	
Thyratron	50	3K3000LQ	9.0
Crossed Field Amplifier		3K50000LF	54
QK681	260	3K210000LQ	150
SFD261	150	3KM300LA	64
Pulsed Gridded		3KM3000LA	19
2041	140	3KM50000PA	110
6952	390	3KM50000PA1	120
7835	140	3KM50000PA2	150
Transmitting		4K3CC	610
Triode, Peak Pwr. ≤ 200 KW, Avg.	75	4K3SK 4K50000LQ	29 30
Pwr. ≤ 2KW, Freq. ≤ 200 MHz		4KM50LB	28
Tetrode & Pentode, Peak Pwr.	100	4KM50LC	15
≤ 200 KW, Avg. Power ≤ 2KW,		4KM50SJ	38
Freq. ≤ 200 KW		4KM50SK	37
If any of the above limits exceeded	250	4KM3000LR	140
Vidicon		4KM50000LQ	79
Antimony Trisulfide (Sb ₂ S ₃)	_	4KM50000LR	57
Photoconductive Material	51	4KM170000LA	15
Silicon Diode Array Photoconductive		8824	130
Material	48	8825	120
Twystron		8826	280
VA144	850	VA800E	70
VA145E	450	VA853	220
VA145H	490	VA856B	65
VA913A	230	VA888E	230
Klystron, Pulsed*	43		
4KMP10000LF	230	 If the CW Klystron of interest is not 	t listed ahove
8568 L3035	66	•	•
L3250	69	use the Alternate CW Klystron λ _b Ta	bie on the
L3403	93	following page.	
SAC42A	100		
VA842	18		
Z5010A	150		
ZM3038A	190		
A 14 11		I	

 $^{^{\}bullet}$ If the pulsed Klystron of interest is not listed above, use the Alternate Pulsed Klystron λ_b Table on the following page.

7.1 TUBES, ALL TYPES EXCEPT TWT AND MAGNETRON

Alternate* Base Failure Rate for Pulsed Klystrons - λ_b

 $\lambda_{h} = 2.94 (F)(P) + 16$

F = Operating Frequency in GHz, $0.2 \le F \le 6$

P = Peak Output Power in MW, $.01 \le P \le 25$ and $P \le 490 \text{ F}^{-2.95}$

*See previous page for other Klystron Base Failure Rates.

Alternate* Base Failure Rate for CW Klystrons - λ_h

								ט־
				F	(MHz)			
P(KW)	300	500	800	1000	2000	4000	6000	8000
					•••			
0.1	30	31	33	34	38	47	57	66
1.0	31	32	33	34	39	48	57	66
3.0	32	33	34	35	40	49	58	
5.0	33	34	35	36	41	50		
8.0	34	35	37	38	42			
10	35	36	38	39	43			
30	45	46	48	49				
50	55	56	58	59				
80	70	71	73					
100	80	81						
	~	•						

 $\lambda_h = 0.5P + .0046F + 29$

P = Average Output Power in KW, $0.1 \le P \le 100$ and $P \le 8.0(10)^6(F)^{-1.7}$

F = Operating Frequency in MHz, $300 \le F \le 8000$

*See previous page for other Klystron Base Failure Rates.

Learning Factor - π_l

T (years)	π_
≤ 1	10
2	2.3
≥ 3	1.0

 $\pi_1 = 10(T)^{-2.1}, 1 \le T \le 3$

= 10, $T \le 1$ = 1, $T \ge 3$

T = Number of Years since Introduction to Field Use

Environment Factor - π_E

Environment ractor - AE					
Environment	πΕ				
G _B	.50				
G _F	1.0				
G _M	14				
N _S	8.0				
NU	24				
A _{IC}	5.0				
A _{IF}	8.0				
A _{UC}	6.0				
A _{UF}	12				
A _{RW}	40				
S _F	.20				
MF	22				
ML	57				
M _L C _L	1000				

7.2 TUBES, TRAVELING WAVE

DESCRIPTION Traveling Ways Tubes

Traveling Wave Tubes

 $\lambda_p = \lambda_b \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Dase Failure Trate - 76										
		Frequency (GHz)								
Power (W)	.1	1_	2	4	6	8	10	14	18	
10	11	12	13	16	19	24	29	42	61	
100	11	12	13	16	20	24	29	42	61	
500	11	12	13	16	20	24	29	42	61	
1000	11	12	13	16	20	24	29	42	62	
3000	11	12	14	17	20	24	29	43	63	
5000	12	13	14	17	20	25	30	44	64	
8000	12	13	14	17	21	26	31	45	66	
10000	12	13	15	18	22	26	32	46	68	
15000	13	14	15	19	23	27	33	49	71	
20000	14	15	16	20	24	29	35	51	75	
30000	15	16	18	22	26	32	39	56	83	
40000	17	18	20	24	29	35	43	62	91	
λ _b =	$\lambda_b = 11(1.00001)^P (1.1)^F$									
P≖	P = Rated Power in Watts (Peak, if Pulsed), .001 ≤ P ≤ 40,000									
F = Operating Frequency in GHz, $.1 \le F \le 18$										
values,	If the operating frequency is a band, or two different values, use the geometric mean of the end point frequencies when using table.									

Environment Factor - π_F

Environment	π _E
G _B	.5
G _F	1.5
G _M	7.0
NS	3.0
N _U	10
A _{IC}	5.0
A _{IF}	7.0
A _{UC}	6.0
A _{UF}	9.0
A _{RW}	20
S _F	.05
M _F	11
ML	33
M _L C _L	500

7.3 TUBES, MAGNETRON

DESCRIPTION

Magnetrons, Pulsed and Continuous Wave (CW)

$\lambda_p = \lambda_b \pi_U \pi_C \pi_E \ \ \text{Failures/10}^6 \ \text{Hours}$

Base Failure Rate - λ_h

	[-		Freq	uency (G	Hz)					
P(MW)	.1	.5	1	5	10	20	30	40	50	60	70	80	90	100
.01	1.4	4.6	7.6	24	41	67	91	110	130	150	170	190	200	220
.05	1.9	6.3	10	34	56	93	120	150	180	210	230	260	280	300
.1	2.2	7.2	12	39	64	110	140	180	210	240	270	290	320	350
.3	2.8	9.0	15	48	80	130	180	220	260	300	330	370	400	430
.5	3.1	10	17	54	89	150	200	240	290	330	370	410	440	480
1	3.5	11	19	62	100	170	230	280	330	380	420	470	510	550
3	4.4	14	24	77	130	210	280	350	410	470	530	580	630	680
5	4.9	16	26	85	140	230	310	390	460	520	580	640	700	760

Pulsed Magnetrons:

 $\lambda_{b} = 19(F)^{.73} (P)^{.20}$

F = Operating Frequency in GHz, $.1 \le F \le 100$

P = Output Power in MW,

.01 ≤ P ≤ 5

CW Magnetrons (Rated Power < 5 KW):

 $\lambda_b = 18$

Utillization Factor - πι

Utilization (Radiate Hours/ Filament Hours)	πυ
0.0	.44
0.1	.50
0.2	.55
0.3	.61
0.4	.66
0.5	.72
0.6	.78
0.7	.83
0.8	.89
0.9	.94
1.0	1.0

 $\pi_{i,i} = 0.44 + 0.56R$

R = Radiate Hours/Filament Hours

Construction Factor - π_C

π _C
1.0
1.0
5.4

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	2.0
G _M	4.0
N _S	15
N _U	47
A _{IC}	10
A _{IF}	16
A _{UC}	12
A _{UF}	23
A _{RW}	80
S _F	.50
M _F	43
ML	133
M _L C _L	2000

8.0 LASERS, INTRODUCTION

The models and failure rates presented in this section apply to <u>laser peculiar items only</u>, i.e., those items wherein the lasing action is generated and controlled. In addition to laser peculiar items, there are other assemblies used with lasers that contain electronic parts and mechanical devices (pumps, valves, hoses, etc.). The failure rates for these parts should be determined with the same procedures as used for other electronic and mechanical devices in the equipment or system of which the laser is a part.

The laser failure rate models have been developed at the "functional," rather than "piece part" level because the available data were not sufficient for "piece part" model development. Nevertheless, the laser functional models are included in this Handbook in the interest of completeness. These laser models will be revised to include piece part models and other laser types when the data become available.

Because each laser family can be designed using a variety of approaches, the failure rate models have been structured on three basic laser functions which are common to most laser families, but may differ in the hardware implementation of a given function. These functions are the lasing media, the laser pumping mechanism (or pump), and the coupling method.

Examples of media-related hardware and reliability influencing factors are the solid state rod, gas, gas pressure, vacuum integrity, gas mix, outgassing, and tube diameter. The electrical discharge, the flashlamp, and energy level are examples of pump-related hardware and reliability influencing factors. The coupling function reliability influencing factors are the "Q" switch, mirrors, windows, crystals, substrates, coatings, and level of dust protection provided.

Some of the laser models require the number of active optical surfaces as an input parameter. An active optical surface is one with which the laser energy (or beam) interacts. Internally reflecting surfaces are not counted. Figure 8-1 below illustrates examples of active optical surfaces and count.

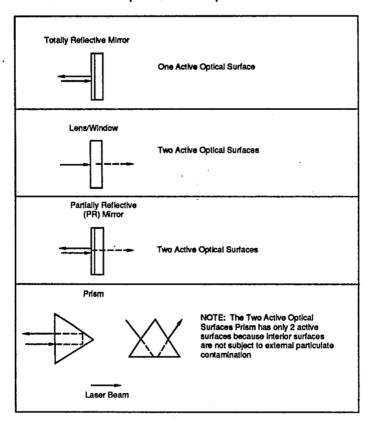


Figure 8-1: Examples of Active Optical Surfaces

8.1 LASERS, HELIUM AND ARGON

DESCRIPTION

Helium Neon Lasers Helium Cadmium Lasers Argon Lasers

 $\lambda_p = \lambda_{MEDIA}^{\pi} E^{+\lambda}_{COUPLING}^{\pi} E$ Failures/10⁶ Hours

Lasing Media Failure Rate - λ_{MEDIA}

Туре	λ _{MEDIA}
He/Ne	84
He/Cd	228
Argon	457

Coupling Failure Rate - $\lambda_{COUPLING}$

Types	^A COUPLING
Helium .	0
Argon	6

NOTE: The predominant argon laser failure mechanism is related to the gas media (as reflected in λ_{MEDIA} ; however, when the tube is refilled periodically (preventive maintenance) the mirrors (as part of $\lambda_{COUPLING}$) can be expected to deteriorate after approximately 10^4 hours of operation if in contact with the discharge region. $\lambda_{COUPLING}$ is negligible for helium lasers.

Environment Factor - π_E

Environment	πΕ
G _B	.30
G _F	1.0
G _{M.}	4.0
N _S	3.0
N _U	4.0
A _{IC}	4.0
A _{IF}	6.0
Auc	7.0
A _{UF}	9.0
A _{RW}	5.0
S _F	.10
MF	3.0 -
ML	8.0
cլ	N/A

8.2 LASERS, CARBON DIOXIDE, SEALED

DESCRIPTION

CO₂ Sealed Continuous Wave Lasers

 $\lambda_p = \lambda_{MEDIA} \pi_O \pi_B \pi_E + 10 \pi_{OS} \pi_E$ Failures/10⁶ Hours

Lasing Media Failure Rate - λ_{MEDIA}

λ _{MEDIA}	
0.40	
2/11	
240 930	
1620	
2310	
3000 6450	
	9900

 $\lambda_{\text{MEDIA}} = 69(I) - 450$

 $I = Tube Current (mA), 10 \le I \le 150$

Gas Overfill Factor = π_{O}

CO ₂ Overfill Percent (%)	π _O
0	· 1.0
25	.75
50	.50

 $\pi_{O} = 1 - .01$ (% Overfill)

Overfill percent is based on the percent increase over the optimum CO_2 partial pressure which is normally in the range of 1.5 to 3 T_{orr} (1 T_{orr} = 1 mm Hg Pressure) for most sealed CO_2 lasers.

Ballast Factor - π_B

Percent of Ballast Volumetric Increase	π _B
0 50 100 150 200	1.0 .58 .33 .19

 $\pi_{B} = (1/3)$ (% Vol. Inc./100)

Optical Surface Factor - π_{OS}

Active Optical Surfaces	π _{OS}
1	t
2	2

 π_{OS} = Number of Active Optical Surfaces

NOTE: Only active optical surfaces are counted. An active optical surface is one with which the laser energy or beam interacts. Internally reflecting surfaces are not counted. See Figure 8-1 for examples on determining the number of optical surfaces.

Environment Factor - π_F

Environment	π _E
G _B	.30
G _F	1.0
G _M	4.0
· NS	3.0
NU	4.0
A _{IC}	4.0
A _{IF}	6.0
A _{UC}	7.0
A _{UF}	9.0
A _{RW}	5.0
S _F	.10
M _F	3.0
ML	8.0
M _L Cլ	· N/A

8.3 LASERS, CARBON DIOXIDE, FLOWING

DESCRIPTION CO₂ Flowing Lasers

 $\lambda_p = \lambda_{COUPLING} \pi_{OS} \pi_E$ Failures/10⁶ Hours

Coupling Failure Rate - $\lambda_{COUPLING}$

and the second s	OOOI EIITO	
Power (KW)	λ _{COUPLING}	
.01 .1 1.0	. 3 30 300	
		_

^λCOUPLING = 300P

P = Average Power Output in KW, .01 ≤ P ≤ 1.0

Beyond the 1KW range other glass failure mechanisms begin to predominate and alter the $\lambda_{COUPLING}$ values. It should also be noted that CO_2 flowing laser optical devices are the primary source of failure occurrence. A tailored optical cleaning preventive maintenance program on optic devices greatly extends laser life.

Optical Surface Factor - π_{OS}

πOS
1
2

 π_{OS} = Number of Active Optical Surfaces

NOTE: Only active optical surfaces are counted. An active optical surface is one with which the laser energy or beam interacts. Internally reflecting surfaces are not counted. See Figure 8-1 for examples on determining the number of optical surfaces.

Environment Factor - π_E

	···E
Environment	π _E
GB	.30
G _F .	1.0
G _M	4.0
N _S	3.0
· N _U	4.0
	4.0
A _{IC} A _{IF}	6.0
A _{UC}	7.0
A _{UF} .	9.0
A _{RW}	5.0
S _F	.10
MF	3.0
ML	8.0
Mլ Cլ	N/A

8.4 LASERS, SOLID STATE, ND:YAG AND RUBY ROD

DESCRIPTION

Neodymium-Yttrium-Aluminum-Garnet (ND:YAG) Rod Lasers Ruby Rod Lasers

$$\lambda_p = (\lambda_{PUMP} + \lambda_{MEDIA} + 16.3 \pi_C \pi_{OS}) \pi_E$$
 Failures/10⁶ Hours

Pump Pulse Failure Rate - λ_{PUMP} (Xenon Flashlamps)

The empirical formula used to determine λ_{PUMP} (Failures/10⁶ Hours) for Xenon lamps is:

$$\lambda_{PUMP} = (3600) \, (PPS) \left[2000 \left(\frac{E_j}{dL\sqrt{t}} \right)^{8.58} \right] \left[\pi_{COOL} \right]$$

λρυμρ is the failure rate contribution of the Xenon flashlamp or flashtube. The flashlamps evaluated herein are linear types used for military solid state laser systems. Typical default model parameters are given below.

PPS is the repetition pulse rate in pulses per second. Typical values range between 1 and 20 pulses per second.

Ej is the flashlamp or flashtube input energy per pulse, in joules. Its value is determined from the actual or design input energy. For values less than 30 joules, use $E_j = 30$. Default value: $E_i = 40$.

d is the flashlamp or flashtube inside diameter, in millimeters. Default value; d = 4.

L is the flashlamp or flashtube arc length in inches. Default value: L = 2.

t is the truncated pulse width in microseconds.

Use t = 100 microseconds for any truncated pulse width exceeding 100 microseconds. For shorter duration pulses, pulse width is to be measured at 10 percent of the maximum current amplitude. Default value: t = 100.

πCOOL is the cooling factor due to various cooling media immediately surrounding the flashlamp or flashtube. πCOOL = 1.0 for any air or inert gas cooling. πCOOL = .1 for all liquid cooled designs. Default value: πCOOL = .1, liquid cooled.

Pump Pulse Failure Rate - λ_{PUMP} (Krypton Flashlamps)

The empirical formula used to determine λ_{PUMP} for Krypton lamp is:

 $\lambda_{\text{PUMP}} = [625] \left[10^{(0.9 \frac{P}{L})} \right] \left[\pi_{\text{COOL}} \right]$ Failures/10⁶ Hours λ_{PUMP} is the failure rate contribution of the krypton

flashlamp or flashtube. The flashlamps evaluted herein are the continuous wave (CW) type and are most widely used for commercial solid state applications. They are approximately 7mm in diameter and 5 to 6 inches long.

P is the average input power in kilowatts. Default value: P = 4.

L is the flashlamp or flashtube arc length in inches. Default value: L = 2.

 $\pi_{\rm COOL}$ is the cooling factor due to various cooling media immediately surrounding the flashlamp or flashtube. $\pi_{\rm COOL} = 1$ for any air or inert gas cooling. $\pi_{\rm COOL} = .1$ for all liquid designs. Default value: $\pi_{\rm COOL} = .1$, liquid cooled.

Media Failure Rate - λ_{MEDIA}

Laser	Laser Type AMEDIA		. λ _{MEDIA}
ND:YA	ND:YAG		, 0
Ruby	Ruby		(3600) (PPS) [43.5 F ^{2.52}]
PPS F	-	is the number of pulses per second is the energy density in Joules per cm.²/pulse over the cross-sectional area of the laser beam, which is nominally equivalent to the cross-sectional area of the laser rod, and its value is determined	
		from the actual design parameter of the laser rod utilized.	

NOTE: \$\lambda_{\text{MEDIA}}\$ is negligible for ND:YAG lasers.

8.4 LASERS, SOLID STATE, ND:YAG AND RUBY ROD

Coupling Cleanliness Factor - π_C

Cleanliness Level	[™] C
Rigorous cleanliness procedures and trained maintenance personnel. Bellows provided over optical train.	1
Minimal precautions during opening, maintenance, repair, and testing. Bellows provided over optical train.	30 .
Minimal precautions during opening, maintenance, repair, and testing. No bellows provided over optical train.	60

NOTE: Although sealed systems tend to be reliable once compatible materials have been selected and proven, extreme care must still be taken to prevent the entrance of particulates during manufacturing, field flashlamp replacement, or routine maintenance/repair. Contamination is the major cause of solid state laser malfunction, and special provisions and vigilance must continually be provided to maintain the cleanliness level required.

Optical Surface Factor - π_{OS}

™os
1
2

π_{OS} = Number of Active Optical Surfaces

NOTE: Only active optical surfaces are counted. An active optical surface is one with which the laser energy or beam interacts. Internelly reflecting surfaces are not counted. See Figure 8-1 for examples on determining the number of optical surfaces.

Environment Factor - π_{E}

Environment Factor - π _E				
Environment	π _E			
G _B	.30			
G _F	1.0			
G _M	4.0			
Ns	3.0			
Nυ	4.0			
AIC	4.0			
AIC AIF	. 6.0			
Auc	7.0			
A _{UF}	9.0			
A _{RW}	5.0			
SF	.10			
MF	3.0			
ML	8.0			
M _L C _L	N/A			

9.1 RESISTORS

$\lambda_p = \lambda_b \pi_T \pi_P \pi_S \pi_Q \pi_E \text{ Failures/10}^6 \text{ Hours}$

Resistor Style	Specification MIL-R-			π _T Table Use Column:	π _S Table Use Column:
RC	11	Resistor, Fixed, Composition (Insulated)	.0017	1	2
RCR	39008	Resistor, Fixed, Composition (Insulated) Est. Rel.	.0017	1	2
RL	22684	Resistor, Fixed, Film, Insulated	.0037	2	1
RLR	39017	Resistor, Fixed, Film (Insulated), Est. Rel.	.0037	2	1
RN (R, C or N)	55182	Resistor, Fixed, Film, Established Reliability	.0037	2	1
RM	55342	Resistor, Fixed, Film, Chip, Established Reliability	.0037	2	1
RN	10509	Resistor, Fixed Film (High Stability)	.0037	2	1
RD	11804	Resistor, Fixed, Film (Power Type)	.0037	N/A, $\pi_T = 1$	1
RZ	83401	Resistor Networks, Fixed, Film	.0019	1	N/A, $\pi_{S} = 1$
RB	93	Resistor, Fixed, Wirewound (Accurate)	.0024	2	1
RBR	39005	Resistor, Fixed, Wirewound (Accurate) Est. Rel.	.0024	2	1
RW	26	Resistor, Fixed, Wirewound (Power Type)	.0024	2	2
RWR	39007	Resistor, Fixed, Wirewound (Power Type) Est. Rel.	.0024	2	2
RE	18546	Resistor, Fixed, Wirewound (Power Type, Chassis Mounted)	.0024	2	2
RER	39009	Resistor, Fixed, Wirewound (Power Type, Chassis Mounted) Est. Rel.	.0024	2	2
RTH	23648	Thermistor, (Thermally Sensitive Resistor), Insulated	.0019	N/A , $\pi_T = 1$	N/A, $\pi_{S} = 1$
RT	27208	Resistor, Variable, Wirewound (Lead Screw Activated)	.0024	2	1
RTR	39015	Resistor, Variable, Wirewound (Lead Screw Activated), Established Reliability	.0024	2	1
RR	12934	Resistor, Variable, Wirewound, Precision	.0024	2	1
RA	19	Resistor, Variable, Wirewound (Low Operating Temperature)	.0024	1	1
RK	39002	Resistor, Variable, Wirewound, Semi-Precision	.0024	1	1
RP	22	Resistor, Wirewound, Power Type	.0024	2	1
RJ	22097	Resistor, Variable, Nonwirewound	.0037	2	1
RJR	39035	Resistor, Variable, Nonwirewound Est. Rel.	.0037	2	1
RV	94	Resistor, Variable, Composition	.0037	2	1
RQ	39023	Resistor, Variable, Nonwirewound, Precision	.0037	1	1
RVC	23285	Resistor, Variable, Nonwirewound	.0037	1	1

9.1 RESISTORS

Temperature Factor - π_T

T(°C)	Column 1	Column 2
20	.88	.95
30	1.1	1.1
40	1.5	1.2
50	1.8	1.3
60	2.3	1.4
70	2.8	1.5
80	3.4	1.6
90	4.0	1.7
100	4.8	1.9
110	5.6	2.0
120	6.6	2.1
130	7.6	2.3
140	8.7	2.4
150	10	2.5

$$\pi_{\text{T}} = \exp\left(\frac{-\text{Ea}}{8.617 \times 10^{-5}} \left(\frac{1}{\text{T} + 273} - \frac{1}{298}\right)\right)$$

Column 1: Ea = .2

Column 2: Ea = .08

T = Resistor Case Temperature. Can be approximated as ambient component temperature for low power dissipation non-power type resistors.

NOTE: π_T values shown should only be used up to the temperature rating of the device. For devices with ratings higher than 150°C, use the equation to determine π_T .

Power Factor - π_P

Power Dissipation (Watts)	π_{P}
.001	.068
.01	.17
.13	.44
.25	.58
.50	.76
.75	.89
1.0	1.0
2.0	1.3
3.0	1.5
4.0	1.7
5.0	1.9
10	2.5
25	3.5
50	4.6
100	6.0
150	7.1

 π_{P} = (Power Dissipation).³⁹

9.1 RESISTORS

Power Stress Factor - π_S

Power Stress	Column 1	Column 2
.1	.79	.66
.2	.88	.81
.3	.99	1.0
.4	1.1	1.2
.5	1.2	1.5
.6	1.4	1.8
.7	1.5	2.3
.8	1.7	2.8
.9	1.9	3.4

Column 1: $\pi_S = .71e^{1.1(S)}$

Column 2: $\pi_S = .54e^{2.04(S)}$

S = Actual Power Dissipation
Rated Power

Quality Factor - π_{O}

Quality	πQ
Established Reliability Styles S	.03
R	0.1
Р	0.3
M	1.0
Non-Established Reliability Resistors (Most Two-Letter Styles)	3.0
Commercial or Unknown Screening Level	10

NOTE: Established reliability styles are failure rate graded (S, R, P, M) based on life testing defined in the applicable military device specification. This category usually applies only to three-letter styles with an "R" suffix.

Environment Factor - π_F

Environment	π _E
GB	1.0
G _F	4.0
G _M	16
N _S	12
NU	42
A _{IC}	18
A _{IF}	23
A _{UC}	31
A _{UF}	43
A _{RW}	63
S _F	.50
M _F	37
MŁ	87
CL	1728

10.1 CAPACITORS

$\lambda_p = \lambda_b^{\pi} T^{\pi} C^{\pi} V^{\pi} SR^{\pi} Q^{\pi} E$ Failures/10⁶ Hours

Capacitor Style	Spec. MIL-C-	Description	λ _b	π _T Table - Use Column:	π _C Table - Use Column:	π _V Table - Use Column:	π _{SR}
СР	25	Capacitor, Fixed, Paper- Dielectric, Direct Current (Hermetically Sealed in Metal Cases)	.00037	1	1	1	1
CA	12889	Capacitor, By-Pass, Radio - Interference Reduction, Paper Dielectric, AC and DC (Hermetically sealed in Metallic Cases)	.00037	1	1	1	1
CZ, CZR	11693	Capacitor, Feed through, Radio Interference Reduction AC and DC (Hermetically sealed in metal cases), Established and Nonestablished Reliability	.00037	1	1	1	1
CQ, CQR	19978	Capacitor, Fixed Plastic (or Paper-Plastic) Dielectric (Hermetically sealed in metal, ceramic or glass cases), Established and Nonestablished Reliability	.00051	1	1	1	1
сн	18312	Capacitor, Fixed, Metallized (Paper, Paper Plastic or Plastic Film) Dielectric, Direct Current (Hermetically Sealed in Metal Cases)	.00037	1	1	1	1
CHR	39022	Capacitor, Fixed, Metallized Paper, Paper-Plastic Film or Plastic Film Dielectric	.00051	1	1	1	1
CFR	55514	Capacitor, Fixed, Plastic (or Metallized Plastic) Dielectric, Direct Current in Non-Metal Cases	.00051	1	1	1	1
CRH	83421	Capacitor, Fixed Supermetallized Plastic Film Dielectric (DC, AC or DC and AC) Hermetically Sealed in Metal Cases, Established Reliability	.00051	1	1	1	1
СМ	5	Capacitors, Fixed, Mica Dielectric	.00076	2	1	2	1
CMR	39001	Capacitor, Fixed, Mica Dielectric, Established Reliability	.00076	2	1	2	1
СВ	10950	Capacitor, Fixed, Mica Dielectric, Button Style	.00076	2	1	2	1
CY	11272	Capacitor, Fixed, Glass Dielectric	.00076	2	1	2	1
CYR	23269	Capacitor, Fixed, Glass Dielectric, Established Reliability	.00076	2	1	2	1

10.1 **CAPACITORS**

Canaditar	Conn	Description		π _T Table -	π _C Table -	π _V Table -	
Capacitor Style	Spec. MIL-C-	Description	λь	Use Column:	Use Column:	Use Column:	π _{SR}
CK	11015	Capacitor, Fixed, Ceramic Dielectric (General Purpose)	.00099	2	1	3	1
CKR	39014	Capacitor, Fixed, Ceramic Dielectric (General Purpose), Established Reliability	.00099	2	1	3	1
CC, CCR	20	Capacitor, Fixed, Ceramic Dielectric (Temperature Compensating), Established and Nonestablished Reliability	.00099	2	1	3	1
CDR	55681	Capacitor, Chip, Multiple Layer, Fixed, Ceramic Dielectric, Established Reliability	.0020	2	1	3	1
CSR	39003	Capacitor, Fixed, Electrolytic (Solid Electrolyte), Tantalum, Established Reliability	.00040	1	2	4	See ^π SR Table
CWR	55365	Capacitor, Fixed, Electrolytic (Tantalum), Chip, Established Reliability	.00005	1	2	4	See π _{SR} Table
CL	3965	Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte), Tantalum	.00040	1	2	4	1
CLR	39006	Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte), Tantalum, Established Reliability	.00040	1	2	4	1
CRL	83500	Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte), Tantalum Cathode	.00040	1	2	4	1
CU, CUR	39018	Capacitor, Fixed, Electrolytic (Aluminum Oxide), Established Reliability and Nonestablished Reliability	.00012	2	2	1	1
CE	62	Capacitor, Fixed Electrolytic (DC, Aluminum, Dry Electrolyte, Polarized)	.00012	2	2	1	1
CV	81	Capacitor, Variable, Ceramic Dielectric (Trimmer)	.0079	1	1	5	1
PC	14409	Capacitor, Variable (Piston Type, Tubular Trimmer)	.0060	2	1	5	1
СТ	92	Capacitor, Variable, Air Dielectric (Trimmer)	.0000072	2	1	5	1
CG	23183	Capacitor, Fixed or Variable, Vacuum Dielectric	.0060	1	1	5	1

10.1 CAPACITORS

Temperature Factor - π_T

7011p0144510 1 441111 111					
T(°C)	Column 1 Column 2				
20	.91	.79			
30	1.1	1.3			
40	1.3	1.9			
50	1.6	2.9			
60	1.8	4.2			
70	2.2	6.0			
80	2.5	8.4			
90	2.8	11			
100	3.2	15			
110	3.7	21			
120	4.1	27			
130	4.6	35			
140	5.1	44			
150	5.6	56			
1					

$$\pi_{\text{T}} = \exp\left(\frac{-\text{Ea}}{8.617 \times 10^{-5}} \left(\frac{1}{\text{T} + 273} - \frac{1}{298}\right)\right)$$

Column 1: Ea = .15

Column 2: Ea = .35

T = Capacitor Ambient Temperature

NOTE: 1. π_T values shown should only be used up to the temperature rating of the device.

2. For devices with ratings higher than 150°C, use the equation to determine π_T (for applications above 150°C).

Capacitance Factor - π_{C}

<u> </u>		
Capacitance, C(μF)	Column 1	Column 2
.000001	.29	.04
.00001	.35	.07
.0001	.44	.12
.001	.54	.20
.01	.66	.35
.05	.76	.50
.1	.81	.59
.5	.94	.85
1	1.0	1.0
3	1.1	1.3
8	1.2	1.6
18	1.3	1.9
40	1.4	2.3
200	1.6	3.4
1000	1.9	4.9
3000	2.1	6.3
10000	2.3	8.3
30000	2.5	11
60000	2.7	13
120000	2.9	15

Column 1: $\pi_C = C^{.09}$

Column 2: $\pi_C = C^{.23}$

10.1 CAPACITORS

Voltage Stress Factor - π_V

Voltage Stress	Column 1	Column 2	Column 3	Column 4	Column 5
0.1	1.0	1.0	1.0	1.0	1.0
0.2	1.0	1.0	1.0	1.0	1.1
0.3	1.0	1.0	1.1	1.0	1.2
0.4	1.1	1.0	1.3	1.0	1.5
0.5	1.4	1.2	1.6	1.0	2.0
0.6	2.0	2.0	2.0	2.0	2.7
0.7	3.2	5.7	2.6	15	3.7
0.8	5.2	19	3.4	130	5.1
0.9	8.6	59	4.4	990	6.8
1	14	166	5.6	5900	9.0

Column 1:
$$\pi_V = \left(\frac{S}{.6}\right)^5 + 1$$

Column 4:
$$\pi_V = \left(\frac{S}{.6}\right)^{17} + 1$$

Column 2:
$$\pi_V = \left(\frac{S}{.6}\right)^{10} + 1$$

Column 5:
$$\pi_V = \left(\frac{S}{.5}\right)^3 + 1$$

Column 3:
$$\pi_V = \left(\frac{S}{.6}\right)^3 + 1$$

Note: Operating voltage is the sum of applied DC voltage and peak AC voltage.

Series Resistance Factor (Tantalum CSR Style Capacitors Only) - π_{SR}

	· on
Circuit Resistance, CR (ohms/volt)	πSR
>0.8	.66
>0.6 to 0.8	1.0
>0.4 to 0.6	1.3
>0.2 to 0.4	2.0
>0.1 to 0.2	2.7
0 to 0.1	3.3

10.1 CAPACITORS

Quality Factor - π_Q

Quality	πQ
Established Reliability Styles	.001
С	.01
S,B	.03
R	.1
Р	.3
М	1.0
L	1.5
Non-Established Reliability Capacitors (Most Two-Letter Styles)	3.0
Commercial or Unknown Screening Level	10.

NOTE: Established reliability styles are failure rate graded (D, C, S, etc.) based on life testing defined in the applicable military device specification. This category usually applies only to three-letter styles with an "R" suffix.

Environment Factor - $\pi_{\rm F}$

E		
Environment 7		
GB	1.0	
G _F	10	
G _M	20	
N _S	7.0	
NU	15	
	12	
A _{IC} A _{IF}	15	
A _{UC}	25	
A _{UF}	30	
A _{RW}	40	
S _F	.50	
M _F	20	
ML	50	
Mլ Cլ	570	

10.2 CAPACITORS, EXAMPLE

Example

Given:

A 400 VDC rated capacitor type CQ09A1KE153K3 is being used in a fixed ground environment, 50°C component ambient temperature, and 200 VDC applied with 50 Vrms @ 60 Hz. The capacitor is being procured in full accordance with the applicable specification.

The letters "CQ" in the type designation indicate that the specification is MIL-C-19978 and that it is a Non-Established Reliability quality level. The "E" in the designation corresponds to a 400 volt DC rating. The "153" in the designation expresses the capacitance in picofarads. The first two digits are significant and the third is the number of zeros to follow. Therefore, this capacitor has a capacitance of 15,000 picofarads. (NOTE: Pico = 10^{-12} , $\mu = 10^{-6}$)

Based on the given information the following model factors are determined from the tables shown in Section 10.1.

$$\lambda_b = .00051$$

$$\pi_T = 1.6$$

$$\pi_{\rm C} = .69$$

Use Table Equation (Note 15,000 pF = $.015 \mu$ F)

$$\pi_V = 2.9$$

$$S = \frac{DC \text{ Volts Applied} + \sqrt{2} \text{ (AC Volts Applied)}}{DC \text{ Rated Voltage}}$$

$$S = \frac{200 + \sqrt{2} (50)}{400} = .68$$

$$\pi_{SR} = 1$$

$$\pi \circ = 3.0$$

$$\pi_{\mathsf{E}} = 10$$

$$\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm T} \pi_{\rm C} \pi_{\rm V} \pi_{\rm SR} \pi_{\rm Q} \pi_{\rm E} = (.00051)(1.6)(.69)(2.9)(1)(3.0)(10)$$

$$\lambda_p = .049 \text{ Failures}/10^6 \text{ Hours}$$

STYLE

TF

TP

MIL-HDBK-217F NOTICE 2

11.1 INDUCTIVE DEVICES, TRANSFORMERS

SPECIFICATION MIL-T-27

MIL-T-21038

MIL-T-55631

DESCRIPTION

Audio, Power and High Power Pulse

Low Power Pulse

Intermediate Frequency (IF), RF and Discriminator

$$\lambda_p = \lambda_b \pi_T \pi_Q \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_h

0			
Transformer	λ _b (F/10 ⁶ hrs.)		
Flyback (< 20 Volts)	.0054		
Audio (15 -20K Hz)	.014		
Low Power Pulse (Peak Pwr. < 300W, Avg. Pwr. < 5W)	.022		
High Power, High Power Pulse (Peak Power ≥ 300W, Avg. Pwr. ≥ 5W)	.049		
RF (10K - 10M Hz)	.13		

Temperature Factor - π_T

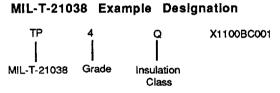
T _{HS} (°C)	π _T
20	.93
30	1.1
40	1.2
50	1.4
60	1.6
70	1.8
80	1.9
90	2.2
100	2.4
110	2.6
120	2.8
130	3.1
140	3.3
150	3.5
160	3.8
170	4.1
180	4.3
190	4.6

$$\pi_{\text{T}} = \exp\left(\frac{-.11}{8.617 \times 10^{-5}} \left(\frac{1}{\text{T}_{\text{HS}} + 273} - \frac{1}{298}\right)\right)$$

T_{HS} = Hot Spot Temperature (°C), See Section 11.3. This prediction model assumes that the insulation rated temperature is not exceeded for more than 5% of the time.

Quality Factor - π_Q

Quality	$\pi_{\mathbf{Q}}$
MIL-SPEC	1
Lower	3


Environment Factor - π_{\digamma}

	<u> </u>
Environment	πE
G _B	1.0
G _F	6.0
G _M	12
N _S	5.0
N _U	16
A _{IC}	6.0
A _{IF}	8.0
A _{UC} A _{UF}	7.0
A _{UF}	9.0
A _{RW}	24
S _F	.50
M _F	13
ML	34
M _L C _L	610

11.1 INDUCTIVE DEVICES, TRANSFORMERS

Transformer Characteristic Determination Note

MIL-T-27 Example Designation TF 4 R 01 GA 576 MIL-T-27 Grade Insulation Family Case Symbol Family Type Codes Are: Power Transformer and Filter: 01 through 09, 37 through 41 Audio Transformer: 10 through 21, 50 through 53 Pulse Transformer: 22 through 36, 54

MIL-T-55631. The Transformers are Designated with the following Types, Grades and Classes.

Type I	-	Intermediate Frequency Transformer
Type II	-	Radio Frequency Transformer
Type III	_	Discriminator Transformer
rype		Diodinimator Transformor
Grade 1	-	For Use When Immersion and
		Moisture Resistance Tests are
		Required
Grade 2	_	For Use When Moisture Resistance
Ciaco E		Test is Required
Crade 2		For Use in Sealed Assemblies
Grade 3	•	For Use in Sealed Assemblies
010		0500 Maniana On anti-
Class O	-	85°C Maximum Operating
		Temperature
Class A	-	105°C Maximum Operating
		Temperature
Class B	-	125°C Maximum Operating
0,000		TEO O MOMINIONI OPOLOMING

The class denotes the maximum operating temperature (temperature rise plus maximum ambient temperature).

Temperature

Temperature

> 125°C Maximum Operating

Document provided by IHS

Class C

INDUCTIVE DEVICES, COILS

SPECIFICATION	
MIL-C-15305	

MIL-C-83446

MIL-C-39010

STYLE

DESCRIPTION

Fixed and Variable, RF Fixed and Variable, RF, Chip

Molded, RF, Est. Rel.

 $\lambda_p = \lambda_b \pi_T \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

Inductor Type	λ _b F/10 ⁶ hrs.
Fixed Inductor or Choke	.000030
Variable Inductor	.000050

Temperature Factor - π_T

T _{HS} (°C)	π_{T}
20	.93
30	1.1
40	1.2
50	1.4
60	1.6
70	1.8
80	1.9
90	2.2
100	2.4
110	2.6
120	2.8
130	3.1
140	3.3
150	3.5
160	3.8
170	4.1
180	4.3
190	4.6
$\pi_{T} = \exp\left(\frac{11}{8.617 \times 10}\right)$	$\frac{1}{-5} \left(\frac{1}{T_{HS} + 273} - \frac{1}{298} \right)$

$$\pi_{\text{T}} = \exp\left(\frac{-.11}{8.617 \times 10^{-5}} \left(\frac{1}{\text{T}_{\text{HS}} + 273} - \frac{1}{298}\right)\right)$$

T_{HS} = Hot Spot Temperature (°C), See Section 11.3

Quality Factor - π_Q

Quality	πQ
S	.03
R	.10
Р	.30
М	1.0
MIL-SPEC	1.0
Lower	3.0

Environment Factor - π_{\leftarrow}

	E
Environment	πE
G _B	1.0
G _F	6.0
G _M	12
N _S	5.0
N _U	16
A _{IC}	6.0
A _{IF}	8.0
AUC	7.0
A _{UF}	9.0
A _{RW}	24
S _F	.50
M _F	13
ML	34
CL	610

11.3 INDUCTIVE DEVICES, DETERMINATION OF HOT SPOT TEMPERATURE

Hot Spot temperature can be estimated as follows:

$$T_{HS} = T_A + 1.1 (\Delta T)$$

where:

T_{HS} = Hot Spot Temperature (°C)

 T_{Δ} = Inductive Device Ambient Operating Temperature (°C)

 ΔT = Average Temperature Rise Above Ambient (°C)

ΔT can either be determined by the appropriate "Temperature Rise" Test Method paragraph in the device base specification (e.g., paragraph 4.8.12 for MIL-T-27E), or by approximation using one of the procedures described below. For space environments a dedicated thermal analysis should be performed.

ΔT Approximation (Non-space Environments)

	Information Known	ΔT Approximation
1.	MIL-C-39010 Slash Sheet Number MIL-C-39010/1C-3C, 5C, 7C, 9A, 10A, 13, 14	ΔT = 15°C
	MIL-C-39010/4C, 6C, 8A, 11, 12	$\Delta T = 35^{\circ}C$
2.	Power Loss Case Radiating Surface Area	$\Delta T = 125 W_L/A$
3.	Power Loss Transformer Weight	$\Delta T = 11.5 \text{ W}_{L}/(\text{Wt.})^{.6766}$
4.	Input Power Transformer Weight (Assumes 80% Efficiency)	$\Delta T = 2.1 \text{ W}_{1}/(\text{Wt.})^{.6766}$

 $W_1 = Power Loss (W)$

A = Radiating Surface Area of Case (in²). See below for MIL-T-27 Case Areas

Wt. = Transformer Weight (lbs.)

W_I = Input Power (W)

NOTE: Methods are listed in preferred order (i.e., most to least accurate). MIL-C-39010 are microminiature devices with surface areas less than 1 in². Equations 2-4 are applicable to devices with surface areas from 3 in² to 150 in². Do not include the mounting surface when determining radiating surface area.

	MIL-T-	27 Case Radiating	Areas (Excludes N	Mounting Surface)	
Case	Area (in ²)	Case	Area (in ²)	Case	Area (in ²)
AF	4	GB	33	LB	82
AG	7	GA	43	LA	98
AH	11	HB	42	MB	98
AJ	18	HA	53	MA	115
EB	21	JB	58	NB	117
EA	23	JA	71	NA	139
FB	25	KB	72	OA	146
FA	31	KA	84		

12.1 ROTATING DEVICES, MOTORS

The following failure-rate model applies to motors with power ratings below one horsepower. This model is applicable to polyphase, capacitor start and run and shaded pole motors. It's application may be extended to other types of fractional horsepower motors utilizing rolling element grease packed bearings. The model is dictated by two failure modes, bearing failures and winding failures. Application of the model to D.C. brush motors assumes that brushes are inspected and replaced and are not a failure mode. Typical applications include fans and blowers as well as various other motor applications. The model is based on References 4 and 37, which contain a more comprehensive treatment of motor life prediction methods. The references should be reviewed when bearing loads exceed 10 percent of rated load, speeds exceed 24,000 rpm or motor loads include motor speed slip of greater than 25 percent.

The instantaneous failure rates, or hazard rates, experienced by motors are not constant but increase with time. The failure rate model in this section is an average failure rate for the motor operating over time period "t". This time period is either the system design life cycle (LC) or the time period the motor must last between complete refurbishment (or replacement). The model assumes that motors are replaced upon failure and that an effective constant failure rate is achieved after a given time due to the fact that the effective "time zero" of replaced motors becomes random after a significant portion of the population is replaced. The average failure rate, λ_p , can be treated as a constant failure rate and added to other part failure rates from this Handbook.

$$\lambda_p = \left[\frac{\lambda_1}{A\alpha_B} + \frac{\lambda_2}{B\alpha_W} \right] \times 10^6 \text{ Failures/} 10^6 \text{ Hours}$$

Bearing & Winding Characteristic Life - α_B and α_W

				* *	
T _A (°C)	α _B (Hr.)	α _W (Hr.)	T _A (°C)	α _B (Hr.)	α _W (Hr.)
0	3600	6.4e+06	70	22000	1.1e+05
10	13000	3.2e+06	80	14000	7.0e+04
20	39000	1.6e+06	90	9100	4.6e+04
30	78000	8.9e+05	100	6100	3.1e+04
40	80000	5.0e+05	110	4200	2.1e+04
50	55000	2.9e+05	120	2900	1.5e+04
60	35000	1.8e+05	130	2100	1.0e+04
			140	1500	7.5e+03

$$\alpha_{\mathsf{B}} = \left[10^{\left(2.534 - \frac{2357}{\mathsf{T_A} + 273}\right)} + \frac{1}{10^{\left(20 - \frac{4500}{\mathsf{T_A} + 273}\right)} + 300} \right]^{-1}$$

$$\frac{2357}{T_A + 273} - 1.83$$

 α_{R} = Weibull Characteristic Life for the Motor Bearing

α_W = Weibull Characteristic Life for the Motor Windings

 T_{Δ} = Ambient Temperature (°C)

NOTE: See page 12-3 for method to calculate α_B and α_W when temperature is not constant.

12.1 ROTATING DEVICES, MOTORS

A and B Determination

Motor Type	Α	В
Electrical (General)	1.9	1.1
Sensor	.48	.29
Servo	2.4	1.7
Stepper	11	5.4

Example Calculation

A general purpose electrical motor is operating at 50°C in a system with a 10 year design life (87600 hours) expectancy,

$$\alpha_B = 55000 \text{ Hrs.}$$

$$\alpha_W$$
 = 2.9e + 5 Hrs.

$$\frac{LC}{\alpha_{P}} = \frac{87600 \text{ Hrs.}}{55000 \text{ Hrs.}} = 1.6$$

$$\frac{LC}{\alpha_W} = \frac{87600 \text{ Hrs.}}{2.9e + 5 \text{ Hrs.}} = .3$$

$$\lambda_1 = 1.0 \qquad \left(\text{for } \frac{LC}{\alpha_B} = 1.6 \right)$$

$$\lambda_2 = .23 \qquad \left(\text{for } \frac{LC}{\alpha_W} = .3 \right)$$

$$A = 1.9$$

$$B = 1.1$$

$$\lambda_{\mathbf{p}} = \left[\frac{1.0}{(1.9)(55000)} + \frac{.23}{(1.1)(2.9e+5)} \right] \times 10^{6}$$

$$\lambda_{\rm p}$$
 = 10.3 Failures/10⁶ Hours

 λ_1 and λ_2 Determination

14 and 12 Determination		
$\frac{LC}{\alpha B}$ or $\frac{LC}{\alpha W}$	λ_1 or λ_2	
010	.13	
.1120	.15	
.2130	.23	
.3140	.31	
.4150	.41	
.5160	.51	
.6170	.61	
.7180	.68	
.8190	.76	
> 1.0	1.0	

LC is the system design life cycle (in hours), or the motor preventive maintenance interval, if motors will be periodically replaced or refurbished. Determine λ_1 and λ_2 separately based on the respective $\frac{LC}{\alpha_B}$ and $\frac{LC}{\alpha_W}$ ratios.

α Calculation for Cycled Temperature

The following equation can be used to calculate a weighted characteristic life for both bearings and windings (e.g., for bearings substitute α_B for all α 's in equation).

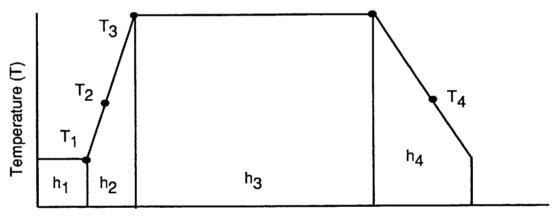
$$\alpha = \frac{\begin{pmatrix} h_1 + h_2 + h_3 + \dots + h_m \end{pmatrix}}{\frac{h_1}{\alpha_1} + \frac{h_2}{\alpha_2} + \frac{h_3}{\alpha_3} + \dots + \frac{h_m}{\alpha_m}}$$

where:

 α = either α_B or α_W

 h_1 = Time at Temperature T_1

 h_2 = Time to Cycle From Temperature T_1 to T_3


h₃ = Time at Temperature T₃

 h_{m} = Time at Temperature T_{m}

 α_1 = Bearing (or Winding) Life at T_1

 α_2 = Bearing (or Winding) Life at T₂

NOTE:
$$T_2 = \frac{T_1 + T_3}{2}$$
, $T_4 = \frac{T_3 + T_1}{2}$

Hours (h)

Thermal Cycle

12.2 ROTATING DEVICES, SYNCHROS AND RESOLVERS

DESCRIPTION

Rotating Synchros and Resolvers

$$\lambda_p = \lambda_b \pi_S \pi_N \pi_E$$
 Failures/10⁶ Hours

NOTE: Synchros and resolvers are predominately used in service requiring only slow and infrequent motion. Mechanical wearout problems are infrequent so that the electrical failure mode dominates, and no mechanical mode failure rate is required in the model above.

Base Failure Rate - λ_b

T _F (°C)	λ _b	T _F (°C)	λ _b
30	.0083	85	.032
35	.0088	90	.032
40	.0095	95	.052
45	.010	100	.069
50 55	.011 .013	105 110	.094 .13
60	.014	115	.19
65	.016	120	.29
70	.019	125	.45
75 80	.022 .027	130 135	.74 1.3
			

$$\lambda_b$$
 = .00535 exp $\left(\frac{T_F + 273}{334}\right)^{8.5}$
 T_F = Frame Temperature (°C)

If Frame Temperature is Unknown Assume $T_F = 40$ °C + Ambient Temperature

Size Factor - π_S

		πS	
DEVICE TYPE	Size 8 or Smaller	Size 10-16	Size 18 or Larger
Synchro	2	1.5	1
Resolver	3	2.25	1.5

Number of Brushes Factor - π_N

Number of Brushes	πN
≤ 2	1.4
3	2.5
4	3.2
1	

Environment Factor - π₌

	E
Environment	π _E
G _B	1.0
G _F	2.0
G _M	12
N _S	7.0
N _U	18
A _{IC}	4.0
A _{IF}	6.0
A _{UC}	16
A _{UF}	25
A _{RW}	26
S _F	.50
M _F	14
ML	36
CL	680

12.3 ROTATING DEVICES, ELAPSED TIME METERS

DESCRIPTION

Elapsed Time Meters

 $\lambda_p = \lambda_b^{\pi} \pi_E^{\pi}$ Failures/10⁶ Hours

Base Failure Rate - λ_b

	•
Туре	λ _b
A.C.	20
Inverter Driven	30
Commutator D.C.	80

Temperature Stress Factor - π_T

Operating T (°C)/Rated T (°C)	π _T
0 to .5	.5
.6	.6
.8	.8
1.0	1.0

Environment Factor - π_E

Environment	πE
G _B	1.0
G _F	2.0
G _M	12
N _S	7.0
N _U	18
A _{IC}	5.0
A _{IF}	8.0
A _{UC}	16
A _{UF}	25
A _{RW}	26
S _F	.50
M _F	14
ML	38
C _L	N/A

13.1 RELAYS, MECHANICAL

SPECIFICATION

DESCRIPTION

MIL-R-5757	MIL-R-83516
MIL-R-6106	MIL-R-83520
MIL-R-13718	MIL-R-83536
MII -R-19648	MIL-R-83725

Mechanical Relay

MIL-R-19523 MIL-R-39016 MIL-R-83726 (Except Class C, Solid State Type)

 $\lambda_p = \lambda_b \pi_L \pi_C \pi_{CYC} \pi_F \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Load	Stress	Factor	- π _I	ì
------	--------	---------------	------------------	---

	Rated Temperature		
T _A (°C)	85°C ¹	125°C ²	
25	.0059	.0059	
30	.0067	.0066	
35	.0075	.0073	
40	.0084	.0081	
45	.0094	.0089	
50	.010	.0098	
55	.012	.011	
60	.013	.012	
65	.014	.013	
70	.016	.014	
75	.017	.015	
80	.019	.017	
85	.021	.018	
90		.019	
95		.021	
100		.022	
105		.024	
110		.026	
115	Ì	.027	
120		.029	
125		.031	
	/ -19	[1 1]\	

-	,	Load Type		
	S	Resistive ¹	Inductive ²	Lamp ³
	.05	1.00	1.02	1.06
	.10	1.02	1.06	1.28
	.20	1.06	1.28	2.72
	.30	1.15	1.76	9.49
	.40	1.28	2.72	54.6
	.50	1.48	4.77	
	.60	1.76	9.49	
	.70	2.15	21.4	
	.80	2.72		
	.90	3.55		
	1.00	4.77		
		_		

1.
$$\lambda_b = .0059 \exp\left(\frac{-.19}{8.617 \times 10^{-5}} \left[\frac{1}{T + 273} - \frac{1}{298}\right]\right)$$

1.
$$\pi_L = \exp\left(\frac{S}{.8}\right)^2$$
 3. $\pi_L = \exp\left(\frac{S}{.2}\right)^2$

2.
$$\lambda_b = .0059 \exp \left(\frac{-.17}{8.617 \times 10^{-5}} \left[\frac{1}{T + 273} - \frac{1}{298} \right] \right)$$

2.
$$\pi_L = \exp\left(\frac{S}{.4}\right)^2$$
 $S = \frac{\text{Operating Load Current}}{\text{Rated Resistive Load Current}}$

T_Δ = Ambient Temperature (°C)

For single devices which switch two different load types, evaluate π_L for each possible stress load type combination and use the worse case (largest π_L).

Contact Form Factor - π_C (Applies to Active Conducting Contacts)

Cycling Factor - π_{CYC}

Contact Form	π _C
SPST	1.00
DPST	1.50
SPDT	1.75
3PST	2.00
4PST	2.50
DPDT	3.00
3PDT	4.25
4PDT	5.50
6PDT	8.00

Cycle Rate (Cycles per Hour)	^π CYC (MIL-SPEC)
	Cycles per Hour
≥ 1.0	10
< 1.0	0.1

Cycle Rate (Cycles per Hour)	π _{CYC} (Commercial Quality)
> 1000	(Cycles per Hour) ²
10 - 1000	Cycles per Hour 10
< 10	1.0

NOTE: Values of π_{CYC} for cycling rates beyond the basic design limitations of the relay are not valid. Design specifications should be consulted prior to evaluation of π_{CYC}

13.1 RELAYS, MECHANICAL

Quality Factor - π_Q

	
Quality	πQ
R	.10
Р	.30
X	.45
U	.60
M	1.0
L	1.5
MIL-SPEC, Non-Est. Rel.	1.5
Commercial	2.9

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	2.0
G _M	15
NS	8.0
N _U	27
A _{IC}	7.0
A _{IF}	9.0
A _{UC}	11
A _{UF}	12
A _{RW}	46
S _F	.50
M _F	25
ML	66
CL	N/A

Application and Construction Factor - π_F

Contact Rating	Application Type	Construction Type	π _F
Signal Current (Low mv and ma)	Dry Circuit	Armature (Long) Dry Reed Mercury Wetted Magnetic Latching Balanced Armature Solenoid	4 6 1 4 7
0-5 Amp	General Purpose	Armature (Long) Balanced Armature Solenoid	3 5 6
	Sensitive (0 - 100 mw)	Armature (Long and Short) Mercury Wetted Magnetic Latching Meter Movement Balanced Armature	5 2 6 100 10
	Polarized	Armature (Short) Meter Movement	10 100
	Vibrating Reed	Dry Reed Mercury Wetted	6 1
	High Speed	Armature (Balanced and Short) Dry Reed	25 6
	Thermal Time Delay	Birnetal	10
	Electronic Time Delay, Non-Thermal		9
	Latching, Magnetic	Dry Reed Mercury Wetted Balanced armature	10 5 5
5-20 Amp	High Voltage	Vacuum (Glass) Vacuum (Ceramic)	20 5
	Medium Power	Armature (Long and Short) Mercury Wetted Magnetic Latching Mechanical Latching Balanced Armature Solenoid	3 1 2 3 2 2
25-600 Amp	Contactors (High Current)	Armature (Short) Mechanical Latching Balanced Armature Solenoid	7 12 10 5

13.2 RELAYS, SOLID STATE AND TIME DELAY

SPECIFICATION

MIL-R-28750 MIL-R-83726

DESCRIPTION

Relay, Solid State

Relay, Time Delay, Hybrid and Solid State

The most accurate method for predicting the failure rate of solid state (and solid state time delay) relays is to sum the failure rates for the individual components which make up the relay. The individual component failure rates can either be calculated from the models provided in the main body of this Handbook (Parts Stress Method) or from the Parts Count Method shown in Appendix A, depending upon the depth of knowledge the analyst has about the components being used. If insufficient information is available, the following default model can be used:

$$\lambda_p = \lambda_b \pi_Q \pi_E \text{ Failures/10}^6 \text{ Hours}$$

Base Failure Rate - λh

Relay Type	λ _b
Solid State	.029
Solid State Time Delay	.029
Hybrid	.029

Quality Factor - π_Q

Quality	πQ
MIL-SPEC	1.0
Commercial	1.9

Environment Factor - π₌

_
π _Ε
1.0
3.0
12
6.0
17
12
19
21
32
23
.40
12
33
590

14.1 SWITCHES

$\lambda_p = \lambda_b \pi_L \pi_C \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λh

	didio nato n	0
1	Spec.	
Description	MIL-S-	λ _b (F/10 ⁶ Hrs.)
Description	WILL	м _b (1710-1113.)
Centrifugal	N/A	3.4
Dual-In-line Package	83504	.00012
Limit	8805	4.3
Liquid Level	21277	2.3
Microwave	N/A	1.7
(Waveguide)		
Pressure	8932	2.8
1.0000.0	9395	
	1211	
Pushbutton	8805	.10
. doi.button	22885	110
	24317	
Reed	55433	.0010
Rocker	3950	.023
1 looke	22885	.020
Rotary	3786	.11
1 lotary	13623	• • • •
	15291	
	15743	
	22604	
	22710	
•	45885	
	82359	
Sensitive	8805	.49
Censitive	13484	. +3
	22614	
Thermal	12285	.031
Inellia	24286	.031
Thumbwheel	22710	.18
	3950	.10
Toggle	5594	.10
	8805	ŀ
	8834	}
	9419	
	13735	
	81551	
	83731	L

Load Stress Factor - π_{l}

Stress		Load Type	
S	Resistive	Inductive	Lamp
0.05	1.00	1.02	1.06
0.1	1.02	1.06	1.28
0.2	1.06	1.28	2.72
0.3	1.15	1.76	9.49
0.4	1.28	2.72	54.6
0.5	1.48	4.77	
0.6	1.76	9.49	
0.7	2.15	21.4	
0.8	2.72		
0.9	3.55		
1.0	4.77		

$$S = \frac{\text{Operating Load Current}}{\text{Rated Resistive Load Current}}$$

$$\pi_{L} = \exp(S/.8)^{2} \quad \text{for Resistive Load}$$

$$\pi_{L} = \exp(S/.4)^{2} \quad \text{for Inductive Load}$$

 $\pi_L = \exp(S/.2)^2$ for Lamp Load

NOTE: When the switch is rated by inductive load, then use resistive $\pi_{\rm I}$.

Contact Configuration Factor* - π_{C}

Contact Form	# of Contacts, NC	π _C
SPST	1	1.0
DPST	2	1.3
SPDT	2	1.3
3PST	3	1.4
4PST	4	1.6
DPDT	4	1.6
3PDT	6	1.8
4PDT	8	2.0
6PDT	12	2.3

$$\pi_{C} = (NC)^{.33}$$

* Applies to toggle and pushbutton switches only, all others use $\pi_{\hbox{\scriptsize C}}$ = 1.

14.1 SWITCHES

Quality Factor - π_Q

Quality	π_{Q}
MIL-SPEC	1
Lower	2

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	3.0
G _M	18
N _S	8.0
N _U	29
A _{IC}	10
A _{IF}	18
Auc	13
A _{UF}	22
A _{RW}	46
S _F	.50
M _F	25
M _L	67
CL	1200

14.2 SWITCHES, CIRCUIT BREAKERS

SPECIFICATION

MIL-C-13516

MIL-C-55629

MIL-C-83383

MIL-C-39019 W-C-375

DESCRIPTION

Circuit Breakers, Manual and Automatic

Circuit Breakers, Magnetic, Unsealed, Trip-Free

Circuit Breakers, Remote Control, Thermal, Trip-Free

Circuit Breakers, Magnetic, Low Power, Sealed, Trip-Free Service

Circuit Breakers, Molded Case, Branch Circuit and Service

$$\lambda_p = \lambda_b \pi_C \pi_U \pi_Q \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λh

Description	λ_{b}
Magnetic	.34
Thermal	.34
Thermal-Magnetic	.34

Quality Factor - π_{O}

π_{Q}
1.0
8.4

Configuration Factor - π_{C}

Configuration	π _C
SPST	1.0
DPST	2.0
3PST	3.0
4PST	4.0

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	2.0
G _M	15
N _S	8.0
N _U	27
A _{IC}	7.0
A _{IF}	9.0
A _{UC}	11
A _{UF}	12
A _{RW}	46
S _F	.50
M _F	25
M_L	66
CL	N/A

Use Factor - π_{II}

Use	π _U
Not Used as a Power On/Off Switch	1.0
Also Used as a Power On/Off Switch	2.5

15.1 CONNECTORS, GENERAL

$$\lambda_p = \lambda_b \pi_T \pi_K \pi_Q \pi_E$$
 Failures/10⁶ Hours

APPLICATION NOTE: The failure rate model is for a mated pair of connectors. It is sometimes desirable to assign half of the overall mated pair connector (i.e., single connector) failure rate to the line replaceable unit and half to the chassis (or backplane). An example of when this would be beneficial is for input to maintainability prediction to allow a failure rate weighted repair time to be estimated for both the LRU and chassis. This accounting procedure could be significant if repair times for the two halves of the connector are substantially different. For a single connector divide $\lambda_{\rm D}$ by two.

Base Failure Rate - λ_b Specification λb MIL-C-Description 5015 .0010 Circular/Cylindrical 26482 26500 27599 28840 29600 38999 83723 81511 Card Edge (PCB)* 21097 .040 55302 Hexagonal 24055 .15 24056 Rack and Panel 24308 .021 28731 28748 83515 Rectangular 21617 .046 24308 28748 28804 81659 83513 83527 83733 85028 RF Coaxial 3607 15370 .00041 3643 25516 3650 26637 3655 39012 55235 83517 Telephone 55074 .0075 Power 22992 .0070 Triaxial 49142 .0036

Temperature Factor - π_{T}

T _O (°C) π _T			
20 .91			
30 1.1			
40 1.3			
50 1.5			
60	60 1.8		
70	2.0		
80	2.3		
90	2.7		
100	3.0		
110	3.4		
120	3.7		
130	130 4.1		
140	140 4.6		
150	150 5.0		
160	160 5.5		
170 6.0			
180 6.5			
190	7.0		
200	7.5		
210	8.1		
220	8.6		
230	9.2		
240	9.8		
250	250 10.		
$\pi_{\text{T}} = \exp\left[\frac{\text{14}}{8.617 \times 10^{-5}} \left(\frac{1}{\text{T}_{\text{O}} + 273} - \frac{1}{298}\right)\right]$			
$T_0 = Connector Ambient + \Delta T$			
ΔT = Connector Insert Temperature Rise (See Table)			

Printed Circuit Board Connector

15.1 CONNECTORS, GENERAL

Default Insert Temperature Rise

Amperes Contact Gauge Per Contact 30 22 20 16 12 2 10 4 2 1 0 3 22 8 5 2 1 4 37 13 8 4 1 5 56 19 13 5 2 6 79 27 18 8 3 7 36 23 10 4 8 46 30 13 5 9 57 37 16 6 10 70 45 19 7 15 96 41 15 20 70 26 25 106 39 30 54 72 40 92		(Δ1 °C) Determination				
2 10 4 2 1 0 3 22 8 5 2 1 4 37 13 8 4 1 5 56 19 13 5 2 6 79 27 18 8 3 7 36 23 10 4 8 46 30 13 5 9 57 37 16 6 10 70 45 19 7 15 96 41 15 20 25 30 30 35 72	Amperes	Contact Gauge				
4 37 13 8 4 1 5 56 19 13 5 2 6 79 27 18 8 3 7 36 23 10 4 8 46 30 13 5 9 57 37 16 6 10 70 45 19 7 15 96 41 15 20 70 26 25 106 39 30 54 35 72	Per Contact	30	22	20	_16	12
4 37 13 8 4 1 5 56 19 13 5 2 6 79 27 18 8 3 7 36 23 10 4 8 46 30 13 5 9 57 37 16 6 10 70 45 19 7 15 96 41 15 20 70 26 25 106 39 30 54 35 72	2	10	4	2	1	0
4 37 13 8 4 1 5 56 19 13 5 2 6 79 27 18 8 3 7 36 23 10 4 8 46 30 13 5 9 57 37 16 6 10 70 45 19 7 15 96 41 15 20 70 26 25 106 39 30 54 35 72	3	22	8	5	2	1
6 79 27 18 8 3 7 36 23 10 4 8 46 30 13 5 9 57 37 16 6 10 70 45 19 7 15 96 41 15 20 70 26 25 106 39 30 54 35 72	4	37	13	8	4	1
7 36 23 10 4 8 46 30 13 5 9 57 37 16 6 10 70 45 19 7 15 96 41 15 20 70 26 25 106 39 30 54 35 72		56	19	13	5	2
7 36 23 10 4 8 46 30 13 5 9 57 37 16 6 10 70 45 19 7 15 96 41 15 20 70 26 25 106 39 30 54 35 72	6	79	27			3
10 70 45 19 7 15 96 41 15 20 70 26 25 106 39 30 54 35 72						4
10 70 45 19 7 15 96 41 15 20 70 26 25 106 39 30 54 35 72						5
15 20 25 30 35 96 41 15 70 26 106 39 54 72						
20 25 30 35 70 106 39 54 72			70			
25 30 35 106 39 54 72				96		
30 54 35 72						
35 72					106	
	L					
	40					92

ΑТ	_	3.256 (i) ^{1.85}	32 Gauge Contacts
		2.856 (i) ^{1.85}	30 Gauge Contacts
		2.286 (i) ^{1.85}	28 Gauge Contacts
		1.345 (i) ^{1.85}	24 Gauge Contacts
		0.989 (i) ^{1.85}	22 Gauge Contacts
		0.640 (i) 1.85	20 Gauge Contacts
		0.429 (i) 1.85	18 Gauge Contacts
		0.274 (i) 1.85	16 Gauge Contacts
ΔT	=	0.100 (i) ^{1.85}	12 Gauge Contacts

 ΔT = Insert Temperature Rise i = Amperes per Contact

RF Coaxial Connectors $\Delta T = 5^{\circ}C$

RF Coaxial Connectors

(High Power Applications) $\Delta T = 50^{\circ}C$

Mating/Unmating Factor - π_K

Mating/Unmating Cycles* (per 1000 hours)	πK
0 to .05	1.0
> .05 to .5	1.5
> .5 to 5	2.0
> 5 to 50	3.0
> 50	4.0

*One cycle includes both connect and disconnect.

Quality Factor - π_{Q}

Quality	π_{Q}
MIL-SPEC	1
Lower	2

Environment Factor - π_E

Environment	πE
G _B	1.0
G _F	1.0
G _M	8.0
N _S	5.0
N _U	13
A _{IC}	3.0
A _{iF}	5.0
Auc	8.0
A _{UF}	12
A _{RW}	19
S _F	.50
M _F	10
ML	27
M _L C _L	490

$\lambda_p = \lambda_b \pi_p \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

	<u> </u>	
Description	Spec. MIL-S	λ _b
Dual-In-Line Package	83734	.00064
Single-In-Line Package	83734	.00064
Chip Carrier	38533	.00064
Pin Grid Array	N/A	.00064
Relay	12883	.037
Transistor	12883	.0051
Electron Tube, CRT	12883	.011

Quality Factor - π_Q

Quality	πQ
MIL-SPEC.	.3
Lower	1.0

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _B	3.0
G _M	14
N _S	6.0
NU	18
A _{IC}	8.0
A _{IF}	12
A _{UC} A _{UF}	11
A _{UF}	13
A _{RW}	25
S _F	.50
M _F	14
ML	36
M _L C _L	650

Active Pins Factor - π_{P}

7 total of the rector with			
Number of		Number of	
Active	π_	Active	π_
Contacts	^π P	Contacts	πР
1	1.0	55	6.9
2	1.5	60	7.4
2 3	1.7	65	7.9
4	1.9	70	8.4
5	2.0	75	8.9
5 6	2.1	80	9.4
7	2.3	85	9.9
8	2.4	90	10
9	2.5	95	11
10	2.6	100	12
11	2.7	105	12
12	2.8	110	13
13	2.9	115	13
14	3.0	120	14
15	3.1	125	14
16	3.2	130	15
17	3.3	135	16
18	3.4	140	16
19	3.5	145	17
20	3.6	150	18
25	4.1	155	18
30	4.5	160	19
35	5.0	165	20
40	5.5	170	20
45	5.9	175	21
50	6.4	180	22

$$\pi_{\mathbf{p}} = \exp\left(\frac{N-1}{10}\right)^{\mathbf{q}}$$

$$a = 39$$

N = Number of Active Pins

An active contact is the conductive element which mates with another element for the purpose of transferring electrical energy.

16.1 INTERCONNECTION ASSEMBLIES WITH PLATED THROUGH HOLES

$$\lambda_p = \lambda_b [N_1 \pi_C + N_2 (\pi_C + 13)] \pi_Q \pi_E$$
 Failures/10⁶ Hours

APPLICATION NOTE: This model applies to board configurations with leaded devices mounted into the plated through holes and assumes failures are predominately defect related. For boards using surface mount technology, use Section 16.2. For a mix of leaded devices mounted into plated through holes and surface mount devices, use this model for the leaded devices and use Section 16.2 for the surface mount contribution.

A discrete wiring assembly with electroless deposit plated through holes is basically a pattern of insulated wires laid down on an adhesive coated substrate. The primary cause of failure for both printed wiring and discrete wiring assemblies is associated with plated through-hole (PTH) problems (e.g., barrel cracking).

Base Failure Rate - λ_b

Technology	λ _b
Printed Wiring Assembly/Printed Circuit Boards with PTHs	.000017
Discrete Wiring with Electroless Deposited PTH (≤ 2 Levels of Circuitry)	.00011

Number of PTHs Factor - N₁ and N₂

Factor	Quantity
N ₁	Automated Techniques: Quantity of Wave Infrared (IR) or Vapor Phase Soldered Functional PTHs
N ₂	Quantity of Hand Soldered PTHs

Complexity Factor - π_C

Number of Circuit Planes, P	π _C
≤ 2	1.0
3	1.3
4 5	1.6
5	1.8
6	2.0
7	2.2
8	2.4
9	2.6
10	2.8 2.9
12	3.1
13	3.3
14	3.4
15	3.6
16	3.7
17	3.9
18	4.0
Discrete Wiring w/PTH	1
$\pi_{\rm C} = .65 {\rm P}^{.63}$	2 ≤ P ≤ 18

Quality Factor - π_Q

Quality	πQ
MIL-SPEC or Comparable Institute for Interconnecting, and Packaging Electronic Circuits (IPC) Standards (IPC Level 3)	1
Lower	2

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	2.0
G _M	7.0
N _S	5.0
N _U	13
A _{IC}	5.0
AIF	8.0
Auc	16
A _{UF}	28
A _{RW}	19
S _F	.50
M _F	10
ML	27
M _L C _L	500

16.2 INTERCONNECTION ASSEMBLIES, SURFACE MOUNT TECHNOLOGY

APPLICATION NOTE: The SMT Model was developed to assess the life integrity of leadless and leaded devices. It provides a relative measure of circuit card wearout due to thermal cycling fatigue failure of the "weakest link" SMT device. An analysis should be performed on all circuit board SMT components. The component with the largest failure rate value (weakest link) is assessed as the overall board failure rate due to SMT. The model assumes the board is completely renewed upon failure of the weakest link and the results do not consider solder or lead manufacturing defects. This model is based on the techniques developed in Reference 37.

λSMT = Average failure rate over the expected equipment life cycle due to surface mount device wearout. This failure rate contribution to the system is for the Surface Mount Device on each board exhibiting the highest absolute value of the strain range:

$$\left| \left(\alpha_{S} \Delta T - \alpha_{CC} (\Delta T + T_{RISE}) \right) \right| \times 10^{-6}$$

$$\lambda_{SMT} = \frac{ECF}{\alpha_{SMT}}$$

ECF = Effective cumulative number of failures over the Weibull characteristic life.

Effective Cumulative Failures - ECE

Effective Cumulative Failures - ECF	
LC	ECF
01 .1120 .2130 .3140 .4150 .5160 .6170 .7180	.13 .15 .23 .31 .41 .51 .61 .68
> .9	1.0

LC = Design life cycle of the equipment in which the circuit board is operating.

 α_{SMT} = The Weibull characteristic life. α_{SMT} is a function of device and substrate material, the manufacturing methods, and the application environment used.

$$\alpha_{SMT} = \frac{N_f}{CF}$$

where:

CR = Temperature cycling rate in cycles per calendar hour. Base on a thermal analysis of the circuit board. Use table default values if other estimates do not exist.

N_f = Average number of thermal cycles to failure

$$N_{f} = 3.5 \left(\frac{d}{.65h} \left| (\alpha_{S} \Delta T - \alpha_{CC} (\Delta T + T_{RISE})) \right| \times 10^{-6} \right)^{-2.26} (\pi_{LC})$$

where:

d = Distance from center of device to the furthest solder joint in mils (thousandths of an inch)

h = Solder joint height in mils for leadless devices. Default to h = 8 for all leaded configurations.

αs = Circuit board substrate thermal coefficient of expansion (TCE)

Δ_T = Use environment temperature extreme difference

α_{CC} = Package material thermal coefficient of expansion (TCE)

TRISE = Temperature rise due to power dissipation (Pd)

 $Pd = \theta_{JC}P$

θ_{JC} = Thermal resistance °/Watt P = Power Dissipation (Watts)

 $\pi_{l,C}$ = Lead configuration factor

CR - Cycling Rate Default Values

Ch - Cycling hate Delault values		
Equipment Type	Number of Cycles/Hour	
Automotive	1.0	
Consumer (television, radio, recorder)	.08	
Computer	.17	
Telecommunications	.0042	
Commercial Aircraft	.25	
Industrial	.021	
Military Ground Applications	.03	
Military Aircraft (Cargo)	.12	
Military Aircraft (Fighter)	.5	

 $\pi_{I,C}$ - Lead Configuration Factor

Lead Configuration	πLC
Leadless	1
J or S Lead	150
Gull Wing	5,000

αCC - TCE Package Values

Substrate Material	α _{CC} Average Value
Plastic	7
Ceramic	6

ΔT - Use Environment Default Temperature Difference

Environment	ΔΤ
G _B	7
G _F	21
G _M	26
N _S	26
N _U	61
A _{IC}	31
A _{IF}	31
Auc	57
A _{UF}	57
A _{RW}	31
S _F	7
M _F	N/A
M _L	N/A
M _L C _L	N/A

 $\alpha_{\mbox{\scriptsize S}}$ - Default TCE Substrate Values

Substrate Material	α _S
FR-4 Laminate	18
FR-4 Multilayer Board	20
FR-4 Multilayer Board w/Copper Clad Invar	11
Ceramic Multilayer Board	7
Copper Clad Invar	5
Copper Clad Molybdenum	5
Carbon-Fiber/Epoxy Composite	1
Kevlar Fiber	3
Quartz Fiber	1
Glass Fiber	5
Epoxy/Glass Laminate	15
Polyamide/Glass Laminate	13
Polyamide/Kevlar Laminate	6
Polyamide/Quartz Laminate	8
Epoxy/Kevlar Laminate	7
Alumina (Ceramic)	7
Epoxy Aramid Fiber	7
Polyamide Aramid Fiber	6
Epoxy-Quartz	9
Fiberglass Teflon Laminates	20
Porcelainized Copper Clad Invar	7
Fiberglass Ceramic Fiber	7

EXAMPLE: A large plastic encapsulated leadless chip carrier is mounted on a epoxyglass printed wiring assembly. The design considerations are: a square package is 1480 mils on a side, solder height is 5 mils, power dissipation is .5 watts, thermal resistance is 20°C/watt, the design life is 20 years and environment is military ground application. The failure rate developed is the impact of SMT for a single circuit board and accounts for all SMT devices on this board. This failure rate is added to the sum of all of the component failure rates on the circuit board.

$$\lambda_{SMT} = \frac{ECF}{\alpha_{SMT}}$$

$$\alpha_{SMT} = \frac{N_f}{CR}$$

16.2 INTERCONNECTION ASSEMBLIES, SURFACE MOUNT TECHNOLOGY

$$N_{f} = 3.5 \left(\frac{d}{(.65)(h)} \left| (\alpha S \Delta T - \alpha CC (\Delta T + T_{RISE})) \right| \times 10^{-6} \right)^{-2.26} \left(\pi_{LC} \right)$$

For d:
$$d = \frac{1}{2} (1480) = 740 \text{ mils}$$

For h:
$$h = 5$$
 mils

For
$$\alpha_S$$
: $\alpha_S = 15$ (Table - Epoxy Glass)

For
$$\Delta_T$$
: $\Delta_T = 21$ (Table - G_F)

For
$$\alpha_{CC}$$
: $\alpha_{CC} = 7$ (Table - Plastic)

For T_{RISE}:
$$T_{RISE} = \theta_{JC} P = 20(.5) = 10^{\circ}C$$

For
$$\pi_{LC}$$
: $\pi_{LC} = 1$ (Table - Leadless)

$$N_{f} = 3.5 \left(\frac{740}{(.65)(5)} \left| (15(21) - 7(21+10)) \right| \times 10^{-6} \right)^{-2.26} (1)$$

$$\alpha_{SMT} = \frac{18,893 \text{ cycles}}{.03 \text{ cyles/hour}} = 629,767 \text{ hours}$$

$$\frac{LC}{\alpha_{SMT}} = \frac{(20 \text{ yrs.}) \left(8760 \frac{\text{hr}}{\text{yr}}\right)}{629,767 \text{ hrs.}} = .28$$

$$\lambda_{SMT} = \frac{ECF}{\alpha_{SMT}} = \frac{.23 \text{ failures}}{629,767 \text{ hours}} = .0000004 \text{ failures/hours}$$

$$\lambda_{SMT} = .4 \text{ failures/}10^6 \text{ hours}$$

17.1 CONNECTIONS

APPLICATION NOTE: The failure rate model in this section applies to connections used on all assemblies except those using plated through holes or surface mount technology. Use the Interconnection Assembly Model in Section 16 to account for connections to a circuit board using either plated through hole technology or surface mount technology. The failure rate of the structure which supports the connections and parts, e.g., non-plated-through hole boards and terminal straps, is considered to be zero. Solderless wrap connections are characterized by solid wire wrapped under tension around a post, whereas hand soldering with wrapping does not depend on a tension induced connection. The following model is for a single connection.

$$\lambda_p = \lambda_b \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λh

Connection Type	λ _b (F/10 ⁶ hrs)
Hand Solder, w/o Wrapping	.0013
Hand Solder, w/Wrapping	.000070
Crimp	.00026
Weld	.000015
Solderless Wrap	.0000068
Clip Termination	.00012
Reflow Solder	.000069
Spring Contact	.17
Terminal Block	.062

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	2.0
G _M	7.0
N _S	4.0
N _U	11
A _{IC}	4.0
A _{IF}	6.0
A _{UC}	6.0
A _{UF}	8.0
A _{RW}	16
S _F	.50
M _F	9.0
ML	24
C _L	420

18.1 METERS, PANEL

SPECIFICATION MIL-M-10304

DESCRIPTION

Meter, Electrical Indicating, Panel Type, Ruggedized

 $\lambda_p = \lambda_b \pi_A \pi_F \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λh

Type	λ _b
All	090

Quality Factor - π_{Ω}

Quality	π _Q
MIL-M-10304	1.0
Lower	3.4

Application Factor - π_A

Application	π _A
Direct Current	1.0
Alternating Current	1.7

Environment Factor - π_{E}

Environment actor he	
Environment	π _E
GB	1.0
G _F	4.0
G _M	25
N _S	12
N _U	35
A _{IC}	28
A _{IF}	42
A _{UC}	58
AUF	73
A _{RW}	60
S _F	1.1
M _F	60
M_L	N/A
M _L C _L	N/A

Function Factor - π_E

Function	·π _F
Ammeter	1.0
Voltmeter	1.0
Other*	2.8

* Meters whose basic meter movement construction is an ammeter with associated conversion elements.

19.1 QUARTZ CRYSTALS

SPECIFICATION MIL-C-3098

DESCRIPTIONCrystal Units, Quartz

 $\lambda_p = \lambda_b \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

Base Failure Hate - 16	
λ _b	
.011 .013 .019 .022 .024 .026 .027 .028 .029 .030 .031 .032 .033 .033 .034 .035 .035 .036 .036 .037 .037	

Environment Factor - π_E

Environment	π _E
G _B .	1.0
G _F	3.0
G _M	10
N _S	6.0
N _U .	16
A _{IC}	12
. A _{IF}	17
AUC	22 .
AUF	28
A _{RW}	23
S _F	.50
M _F	13
м∟	32
Cլ	500

Quality Factor - TO

	<u> </u>
Quality	πQ
MIL-SPEC	1.0
Lower	2.1

20.1 LAMPS

SPECIFICATION MIL-L-6363 W-L-111

DESCRIPTION

Lamps, Incandescent, Aviation Service Lamps, Incandescent, Miniature, Tungsten-Filament

$\lambda_p = \lambda_b \pi_U \pi_A \pi_E$ Failures/10⁶ Hours

APPLICATION NOTE: The data used to develop this model included randomly occurring catastrophic failures and failures due to tungsten filament wearout.

Base Failure Rate - λ_b

Rated Voltage, V _r (Volts)	λ_{b}
5 6 12 14 24 28 37.5	.59 .75 1.8 2.2 4.5 5.4 7.9
$\lambda_b = .074(V_r)^{1.29}$	

Utilization Factor - π_U

Utilization (Illuminate Hours/ Equipment Operate Hours)	πυ
< 0.10	0.10
0.10 to 0.90	0.72
> 0.90	. 1.0

Application Factor - π_{Δ}

Application	π_{A}
Alternating Current	1.0
Direct Current	3.3

Environment Factor - π_E

	<u> </u>
Environment	π _E
GB	1.0
G _F	2.0
G _M	3.0
N _S	3.0
NU	4.0
A _{IC}	4.0
A _{IF}	4.0
A _{UÇ}	5.0
. A _{UF}	6.0
A _{RW}	5.0
S _F	.70
M _F	4.0
. M _L	6.0
c _L	27
<u> </u>	<u></u>

21.1 ELECTRONIC FILTERS, NON-TUNABLE

SPECIFICATION

MIL-F-15733 MIL-F-18327

DESCRIPTION

Filters, Radio Frequency Interference Filters, High Pass, Low Pass, Band Pass, Band Suppression, and Dual Functioning (Non-tunable)

The most accurate way to estimate the failure rate for electronic filters is to sum the failure rates for the individual components which make up the filter (e.g., IC's, diodes, resistors, etc.) using the appropriate models provided in this Handbook. The Parts Stress models or the Parts Count method given in Appendix A can be used to determine individual component failure rates. If insufficient information is available then the following default model can be used.

$\lambda_p = \lambda_b \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λh

Туре	λ _b
MIL-F-15733, Ceramic-Ferrite Construction (Styles FL 10-16, 22, 24, 30-32, 34, 35, 38, 41-43, 45, 47-50, 61-65, 70, 81-93, 95, 96)	.022
MIL-F-15733, Discrete LC Components, (Styles FL 37, 53, 74)	.12
MIL-F-18327, Discrete LC Components (Composition 1)	.12
MIL-F-18327, Discrete LC and Crystal Components (Composition 2)	.27

Quality Factor - TO

Quality	πQ
MIL-SPEC	1.0
Lower	2.9

Environment Factor - π₌

	<u> </u>
Environment.	πΕ
GB	1.0
G _F	2.0 ·
G _M	. 6.0
. N _S	4.0
NU	· 9.0 ·
A _{IC}	7.0
A _{IF}	9.0
Auc	11
A _{UF}	13
A _{RW}	11
S _F	.80
M _F	7.0
ML	15
CL	120

22.1 FUSES

SPECIFICATION W-F-1726 W-F-1814

MIL-F-5372 ML-F-23419 MIL-F-15160 **DESCRIPTION**

Fuse, Cartridge Class H

Fuse, Cartridge, High Interrupting Capacity

Fuse, Current Limiter Type, Aircraft

Fuse, Instrument Type

Fuse, Instrument, Power and Telephone

(Nonindicating), Style F01

 $\lambda_p = \lambda_b \pi_E \text{ Failures/10}^6 \text{ Hours}$

APPLICATION NOTE: The reliability modeling of fuses presents a unique problem. Unlike most other components, there is very little correlation between the number of fuse replacements and actual fuse failures. Generally when a fuse opens, or "blows," something else in the circuit has created an overload condition and the fuse is simply functioning as designed. This model is based on life test data and represents fuse open and shorting failure modes due primarily to mechanical fatigue and corrosion. A short failure mode is most commonly caused by electrically conductive material shorting the fuse terminals together causing a failure to open condition when rated current is exceeded.

Base Failure Rate - λh

Туре	λ _b
W-F-1726, W-F-1814, MIL-F- 5372, MIL-F-23419, ML-F-15160	.010

Environment Factor - π_{\sqsubseteq}

Environment	πE
GB	1.0
G _F	2.0
G _F G _M	8.0
N _S	5.0
N _S N _U	11
A _{IC} A _{IF}	9.0
A _{lF}	12
A _{UC} .	15
A _{UF}	18
A _{RW}	16
S _F	.90
MF	10
ML	21
M _L C _L	230

23.1 MISCELLANEOUS PARTS

 λ_{p} - Failure Rates for Miscellaneous Parts (Failures/10 6 Hours)

Part Type	Failure Rate
Vibrators (MIL-V-95) 60-cycle 120-cycle 400-cycle	15 20 40
Lamps Neon Lamps	0.20
Fiber Optic Cables (Single Fiber Types Only)	0.1 (Per Fiber Km)
Single Fiber Optic Connectors*	0.10
Microwave Elements (Coaxial & Waveguide) Attenuators (Fixed & Variable)	See Resistors, Type RD
Fixed Elements (Directional Couplers, Fixed Stubs & Cavities)	Negligible ·
Variable Elements (Tuned Stubs & Cavities)	0.10
Microwave Ferrite Devices Isolators & Circulators (≤100W)	0.10 x π _E
Isolators & Circulators (>100W)	0.20 × π _E
Phase Shifter (Latching)	0.10 x π _E
Dummy Loads < 100W	0.010 x π _E
100W to ≤ 1000W	0.030 × π _E
> 1000W	0.10 x π _E
Terminations (Thin or Thick Film Loads Used in Stripline and Thin Film Circuits)	0.030 x π _E

^{*}Caution: Excessive Mating-Demating Cycles May Seriously Degrade Reliability

23.1 MISCELLANEOUS PARTS

ARW

SF

MF

M_L

Environment Factor - π_E (Microwave Ferrite Devices)

Environment πE 1.0 G_B G_{F} 2.0 G_{M} 8.0 5.0 NS NU 12 A_{IC} 5.0 A_{IF} 8.0 A_{UC} 7.0 A_{UF} · 11

17

.50

9.0

24

450

Environment Factor - π_E

(D	ummy	Loads)	

Environment	π _E
G _B	1.0
G _F	2.0
G _M	10
N _S	5.0
N _U	· 17
AIC	6.0
A _{IF}	8.0
Auc	14
A _{UF}	22
A _{RW}	25
S _F	.50
MF	14
ML	36 [']
M _L C _L	660

APPENDIX A: PARTS COUNT RELIABILITY PREDICTION

Parts Count Reliability Prediction - This prediction method is applicable during bid proposal and early design phases when insufficient information is available to use the part stress analysis models shown in the main body of this Handbook. The information needed to apply the method is (1) generic part types (including complexity for microcircuits) and quantities, (2) part quality levels, and (3) equipment environment. The equipment failure rate is obtained by looking up a generic failure rate in one of the following tables, multiplying it by a quality factor, and then summing it with failure rates obtained for other components in the equipment. The general mathematical expression for equipment failure rate with this method is:

$$\lambda_{\text{EQUIP}} = \sum_{i=1}^{i=n} N_i (\lambda_g \pi_Q)_i$$
 Equation 1

for a given equipment environment where:

 λ_{EQUIP} = Total equipment failure rate (Failures/10⁶ Hours)

 λ_{c} = Generic failure rate for the i th generic part (Failures/10⁶ Hours)

 π_{O} = Quality factor for the i th generic part

N_i = Quantity of i th generic part

n = Number of different generic part categories in the equipment

Equation 1 applies if the entire equipment is being used in one environment. If the equipment comprises several units operating in different environments (such as avionics systems with units in airborne inhabited (A_{\parallel}) and uninhabited (A_{\parallel}) environments), then Equation 1 should be applied to the portions of the equipment in each environment. These "environment-equipment" failure rates should be added to determine total equipment failure rate. Environmental symbols are defined in Section 3.

The quality factors to be used with each part type are shown with the applicable λ_g tables and are not necessarily the same values that are used in the Part Stress Analysis. Microcircuits have an additional multiplying factor, π_L , which accounts for the maturity of the manufacturing process. For devices in production two years or more, no modification is needed. For those in production less than two years, λ_g should be multiplied by the appropriate π_l factor (See page A-4).

It should be noted that no generic failure rates are shown for hybrid microcircuits. Each hybrid is a fairly unique device. Since none of these devices have been standardized, their complexity cannot be determined from their name or function. Identically or similarly named hybrids can have a wide range of complexity that thwarts categorization for purposes of this prediction method. If hybrids are anticipated for a design, their use and construction should be thoroughly investigated on an individual basis with application of the prediction model in Section 5.

The failure rates shown in this Appendix were calculated by assigning model default values to the failure rate models of Section 5 through 23. The specific default values used for the model parameters are shown with the λ_g Tables for microcircuits. Default parameters for all other part classes are summarized in the tables starting on Page A-12. For parts with characteristics which differ significantly from the assumed defaults, or parts used in large quantities, the underlying models in the main body of this Handbook can be used.

APPENDIX A: PA	ARTS '	COUNT
----------------	--------	-------

APPE	<u>XIDIX</u>	A:	PART	s cou	NT					
,	၂ ₀₉	5.00	3.3 12 17 21	1.1 2.0 3.4	1.2 1.9 3.3	1.2 1.9 3.3 17 17	1.1 1.4 2.0 3.4	1.9 2.3 3.3	3.3 5.6 12	3.4 5.6
<u> </u>	M _L	.069	.65 .95 1.2	.096 .15 .26 .41	.076 .12 .22	.074 .12 .21 .69 1.0	.096 .15 .26 .41	5.5.5.6. 19.3.5.6.	.24 .41 .86	.28 .50 1.0
. ≥ 2 Y	M _F 65	.030	.28 .41 .53	.044 .072 .12	.034 .057 .10	.033 .053 .095 .30 .46	.044 .072 .12 .19	.044 .052 .053	.11 .20 .42	.15 .27 .54
oduction	S _F 50	.0036 .0060	.033 .052 .075	.0095 .017 .033	.0061	.0057 .010 .019 .049 .084	.0095 .017 .033	.0046 .0056 .0061	.028 .052 .11	.048 .093
π _Q Values 1 (Device in Production ≥ 2 Yr.))	ARW 75	.047	. 44 . 65 . 85	.076 .13 .22 .35	.054 .089 .16	.052 .083 .15 .48 .72	.076 .13 .22 .35	.070 .083 .084	.18 .31 .65	.22 .40 .82
or #Q V8 = 1 (Dev	AUF 90	.049	. 46 . 68 . 90	.13 .24 .44 .67	.061 .10	.056 .092 .17 .51 .79	.13 .24 .44	.070 .084 .086 .13	.39 181	.28 .52 1.1
A-4 fo ν), π _L =	Auc 90	.032	.30 .45 .61	.12 .22 .41	.044 .077 .14	.039 .066 .12 .36 .56	.12 .22 .41	.044 .053 .055 .083	.17 .32 .65	.24 .45
See Page A-4 for $\pi_{\mathbf{Q}}$ Values own Below), $\pi_{\mathbf{L}}=1$ (Device in	A _{IF}	.030	.28 .42 .56	.062 .11 .19	.037 .063 .11	.035 .057 .10 .32 .49	.062 .11 .19	.044 .052 .054 .080	.13 .24 .49	.17 .32 .66
	A _{IC}	.025	23 24 46 46	.057 .10 .19	.032 .054 .099	.029 .049 .088 .27 .42	.10 .10 .19	.035 .042 .043	.12 144	.30 .30 .13
(Failures/10 ⁶ Hours) for Microcircuits. Weld Seal DIPs/PGAs (No. Pins as Si	N 65	.035	. 84 8. 63 8. 63	.049 .078 .13	.040 .065 .12	.039 .062 .11 .36 .54	.049 .078 .13	.052 .062 .063	.13 .23 .47	.16 .29 .60
urs) for GAS (N	NS 09	024	22 23 23 63 63 63	.034 .054 .092 .15	.027 .045 .082	.027 .043 .077 .24 .37	.034 .054 .092	.035 .042 .042	.091 .16 .33	.12 .22 .45
/10 ⁶ Hoi al DIPs/I	G _M	.024	22 33 44.	.039 .065 .11	.029 .048 .087	.027 .045 .080 .25 .39	.039 .065 .11	.035 .042 .043	.098 .18 .36	.13 .24 .49
Failures Weld Sea	G _F	.020	. 12 17 23	.024 .041 .074	.016 .028 .052	.015 .026 .047 .14	.024 .041 .074	.018 .021 .022	.061 .11	.089 .17 .34
Rate, λg (Solder or V	G _B		.033 .052 .075	.0095 .017 .033	.0061 .011			.0046 .0056 .0061 .0095	.028 .052 .11	.048 .093 .19
Generic Failure Ra on Ea Shown, Sol	Environ. → T _J (°C) →	(16 Pin DIP) (24 Pin DIP)	(40 Pin DIP) (128 Pin PGA) (180 Pin PGA) (224 Pin PGA)	(14 Pin DIP) (18 Pin DIP) (24 Pin DIP) (40 Pin DIP)	(16 Pin DIP) (24 Pin DIP) (40 Pin DIP)	(16 Pin DIP) (24 Pin DIP) (40 Pin DIP) (128 Pin PGA) (180 Pin PGA) (224 Pin PGA)	(14 Pin DIP) (18 Pin DIP) (24 Pin DIP) (40 Pin DIP)	(24 Pin DIP) (28 Pin DIP) (28 Pin DIP) (40 Pin DIP)	(40 Pin DIP) (64 Pin PGA) (128 Pin PGA)	(40 Pin DIP) (64 Pin PGA) (128 Pin PGA)
Gener (Defaults: π _T Based on E	on Part Type	Bipolar Technology Gate/Logic Arrays, Digital (Ea = .4) 1 - 100 Gates 101 - 1000 Gates	1001 to 3000 Gates 3001 to 10,000 Gates 10,000 to 30,000 Gates 30,000 to 60,000 Gates	.65) S	Programmable Logic Arrays (Ea = .4) Up to 200 Gates 201 to 1000 Gates 1001 to 5000 Gates	MOS Technology Gate/Logic Arrays, Digital (Ea = .35) 1 to 100 Gates 101 to 1000 Gates 1001 to 3000 Gates 3001 to 10,000 Gates 10,001 to 30,000 Gates 30,000 to 60,000 Gates	Linear Microcircuits (Ea = .65) 1 to 100 Transistors 101 to 300 Transistors 301 to 1,000 Transistors 1001 to 10,000 Transistors	Floating Gate Programmable Logic Array, MOS (Ea =:35) Up to 500 Gates 501 - 2000 Gates 2001 - 5000 Gates 5001 to 2000 Gates	Microprocessors, Bipolar (Ea = .4) Up to 8 Bits Up to 16 Bits Up to 32 Bits	Microprocessors, MOS (Ea = .35) Up to 8 Bits Up to 16 Bits Up to 32 Bits
	Section #	5.1		5.7	5.1	5.1	5.7	5.1	5.1	5.1

						APPEN	DIX A:	PARTS COU
09 09	2.3 3.3 3.3	- X X & &	1.4	4. t. t. 5 6. t. 9 6. t. 9	1.9 2.3 3.4	9.2.3 9.3.3 4.4.	1.2	က် လ
)) M _L 75	11 113 120	1. 1.3 1.3 1.3	.080 .10 .12	.098 1.19 30	5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	30 88 30	.031 .068 .16	30
≥ 2 Yr.)) MF 65	.044 .053 .055	.045 .054 .057	.034 .043 .051 .067	.044 .065 .092	.058 .081 .11	.052 .069 .084	.028 .028	5
1 (Device in Production AUF ARW SF 90 75 50	.0047 .0059 .0067	.0048 .0062 .0072	.0040 .0055 .0074	.0079 .014 .023	.010 .017 .028 .053	.0075 .012 .018 .033	.0028	.013
ARW 75	.071 .086 .089	.072 .087 .092	.055 .070 .084	.073 .11 .26	.096 .19 .33	.084	.045	50
AUF 90	.074 .090 .099 .15	.075 .093 .10	.059 .079 .10	.10 .17 .27	1. 1. 2. 1. 3.3 1. 3.3	.15 .39 .39	.047	82
Auc 90	.048 .060 .068	.049 .062 .073	.040 .056 .076 .12	.083 .14 .25 .46	.10 .30 .56	.12 .19 .35	.030 .030	5
n Below), A _{IF}	.045 .055 .059	.046 .056 .061	.035 .047 .058 .080	.054 .085 .13	.070 .11 .16	.058 .083 .11	.028	13
A _{IC}	.037 .045 .048	.037 .046 .051	.029 .039 .049	.048 .077 .12	.062 .095 .15	.050 .072 .10 .18	.023	10
Pins N _U 65	.053 .063 .066 .098	.053 .064 .067	.040 .051 .060	.050 .073 .10	.067 .091 .12	.060 .079 .095 .16 .CMOS	.034	52.
GAS (No	.035 .042 .044	.036 .043 .045	.027 .034 .040	.034 .050 .071	.046 .063 .085	.041 .054 .065 .11 3, VHSIC	.010 .022 .052	0-
Seal DiPs/PGAs (No. F GM NS 0 65 60	.036 .043 .045	.036 .044 .046	.027 .036 .043	.038 .057 .084	.050 .071 .10 .18	.043 .058 .074 .13 Section 5.	.010 .022 .052	0
Weld Sea GF 60	.018 .022 .023	.018 .022 .024	.014 .019 .023	.022 .034 .053	.028 .043 .065	.023 .033 .045 .079 Refer to	.0052	.050
5 B 3	.0047 .0059 .0067	.0049 .0061 .0072	.0040 .0055 .0074	.0079 .014 .023	.010 .017 .028 .053	.0075 .012 .018 .033	.0013	.013
on Ea Shown, Solder Environ. \rightarrow T_J (°C) \rightarrow	(24 Pin DIP) (28 Pin DIP) (28 Pin DIP) (40 Pin DIP)	(24 Pin DIP) (28 Pin DIP) (28 Pin DIP) (40 Pin DIP)	(18 Pin DIP) (22 Pin DIP) (24 Pin DIP) (28 Pin DIP)	(18 Pin DIP) (22 Pin DIP) (24 Pin DIP) (28 Pin DIP)	(24 Pin DIP) (28 Pin DIP) (28 Pin DIP) (40 Pin DIP)	(24 Pin DIP) (28 Pin DIP) (28 Pin DIP) (40 Pin DIP)	(8 Pin DIP) (16 Pin DIP) (36 Pin DIP)	(64 Pin PGA)
(Defaults: π_T Based on Ea	MOS Technology Memories, ROM (Ea = .6) Up to 16K 16K to 64K 64K to 256K 256K to 1 MB	Memories, PROM, UVEPROM, EEPROM, EEPROM, EAPROM (Ea = 6) (NOTE: 3 _{pc} = 0 Assumed for EEPROM) Up to 16K 16K to 64K 64K to 256K 256K to 1 MB	Memories, DRAM (Ea = .6) Up to 16K 16K to 64K 64K to 256K 256K to 1 MB	Memories, SRAM, (MOS & BiMOS) (Ea = .6) Up to 16K 16K to 64K 64K to 556K 256K to 1 MB	Bipolar Technology Memories, ROM, PROM (Ea = .6) Up to 16K 16K to 64K 64K to 256K 256K to 1 MB	Memories, SRAM (Ea = .6) Up to 16K 16K to 64K 64K to 256K 256K to 1 MB VHSIC Microcircuits, CMOS GaAs MMC (Ea = 1.5)	1 to 100 Elements 101 to 1000 Active Elements (Pedaut: Driver and High Power (> 100 mW)) GaAs Digital (Ea = 1.4) 1 to 1000 Active Elements	1001 to 10,000 Active Elements
Section #	5.2 P	5.2	5.2	5.2	5.2	5.2		

 $\pi_{Q} = 2 + \frac{87}{7 + 7 + 11} = 5.5$

Mfg. performs Group 1 test and Class B burn-in: $\pi_Q = 2 + \frac{87}{50+30} = 3.1$ Mfg. performs internal visual test, seal test and final electrical test: 70 = 10

Other Commercial or Unknown Screening Levels

MIL-HDBK-217F

_

AP	PI	END	IX	A :	Р	ARI	rs	C	<u> </u>	NT				
Programs Point Valuation		90		37	30 (B Level)	11	11 (Note 1)		7	7 (Note 2)	7	7 (Note 2)	-	-
Quality Factors (corti'd): n _Q Calculation for Custom Screening Programs MIL-STD-883 Screen/Test (Note 3)	TM 1010 (Temperature Cycle, Cond B Minimum) and TM 2001 (Constant	Acceleration, Cont D Minimum) and 1M 5004 (or 5008 for Hybrids) (Final Electricals @ Temp Extremes) and TM 1014 (Seal Test, Cond A, B, or C) and TM 5009 (External Visual)	TM 1010 (Temperature Cycle, Cond B Minimum) or TM 2001 (Constant Acceleration, Cond B Minimum)	TM 5004 (or 5008 for Hybrids) (Final Electricals @ Temp Extremes) and TM 1014 (Seal Test, Cond A, B, or C) and TM 2009 (External Visual)	Pre-Burn in Electricals That 1015 (Burnin B-Level/S-Level) and TM 5004 (or 5008 for Hybrids) Poet Burnin Flactricals (7 Tann Fyrense)	TM 2020 Pind (Panticle Impact Noise Detection)	TM 5004 (or 5008 for Hybrids) (Final Electricals @ Temperature	Extremes)	TM 2010/17 (Internal Visual)	TM 1014 (Seal Test, Cond A, B, or C)	TM 2012 (Radiography)	TM 2009 (External Visual)	TM 5007/5013 (GaAs) (Wafer Acceptance)	TM 2023 (Non-Destructive Bond Pull)
Group		÷			6	4	ç		9	÷	80	on.	10	=
	Ö,			.25				1.0				00	ì	
Ouality Factors - πo	Description	ass S. Calegories.	1. Procured in full accordance with MiL-M-38510, Class S requirements.	2. Procured in full accordance with MilI-38535 and Appendix B thereto (Class U).	3. Hybrids: (Procured to Class S requirements (Quality Level K) of MIL-H-38534.	lass B Categories;	1. Procured in full accordance with MIL-M-38510, Class B requirements.	2. Procured in full accordance with MIL-I-38535, (Class Q).	3. Hybrids: Procured to Class B requirements (Quality Level H) of MIL-H-38534.		lass B-1.Category:	Fully compliant with all requirements of paragraph 1.2.1 of MIL-STD-983 and procured to a MII drawing DESC designs or other concernment agreement described designs of the paragraphs of the procured to the processing of the procured to the paragraphs.	include hybrids). For hybrids use custom screening section below.	

CADA TOM		NOTES: 1. Palm 2. Palm	3. Søqu	5. Non		EXAMPLES:	2. Mfg.	Other	
	ער	2.0	1.8	1.5	1.2	1.0		in production	
Learning Factor - 12	Years in Production, Y	1.2	5:	1.0	1.5	≥ 2.0	π _t = .01 exp(5.35 · .35Y)	Y = Years generic device type has been in production	

Point valuation only assigned if used independent of Groups 1, 2 or 3. Point valuation only assigned if used independent of Groups 1 or 2. Sequencing of tests within groups 1, 2 and 3 must be followed.

TM refers to the MIL-STD-883 Test Method.

Nonhermetic parts should be used only in controlled environments (i.e., G_B and other

NOT APPROPRIATE FOR PLASTIC PARTS. ^πQ = 2 + Σ Point Valuations

temperature/humldity controlled environments).

Class S Categories:

Class B Categories:

Class B-1 Category:

																			API	PENI	DIX	A	:	PA	RT	s	co	UNT	<u> </u>
	J	8		7.	.40	9	1.2	.; 5:	1.3		2.1	350	98	1.2	8.5	4		3.3	1.1		.056	2.2	5.3	30	8	160	6.4	28	=
	Σ	75		.23	090	1.5	18	6	.16		.28	29	12	1.	1.1	8.		.41	.16		.0074	.29	.68	3.6	Ξ	27	88.	3.6	:
	M	65		920.	.020	.50	.060	.062	090		10	16	3.7	.048	.34	.56		.13	.053		.0027	L .	.25	1.2	2.8	6.9	.31	7	14.
	S	80		.0018	.00047	.012	.0014	.0015	.0016		.0028	£4.	.16	.002	.014	.023		.0054	.0012		.000073	.0029	6900	.049	.083	5.	6200.	.047	.023
ors	ARW	75		.17	.045	- :	.13	.14	12		.21	4	6.7	.10	77.	5.		.28	.12		9500	.22	.51	2.4	7.2	18	99.	2.4	.73
conduct	Ą	8		44.	.12	2.9	.35	.36	.27		.46	62	9.7	760.	69.	Ξ		.26	.31		.013	.50	- -	2.3	9.5	23	1.6	2.3	.55
ete Sem	VC	8		.20	.054	1.3	.16	11.	£.		.22	36	4.5	.057	4.	.67		51.	4.		0900	.23	.53	1.3	5.4	13	7.	1.3	.32
Hours) for Discrete Semiconductors	ΑlF	75		.21	.054	1.4	91.	.17	.15		:25	14	2.5	.032	.22	.37		980	4.		.0067	.26	.62	9/.	2.3	5.6	.80	.75	.23
Hours) f	Aıc	75		.092	.024	.61	.073	.075	990:		Ξ.	=	2.0	.025	18	.30		690	.064		.0030	.12	.28	19:	1.8	4.5	36	99.	.18
	z	8		.10	.027	89.	.082	.084	.082		.14	50	4.6	.058	4	89.		.16	.072		.0037	5.	.34	4.1	3.4	8.5	.42	t. 4 .	.50
g (Failu	N _S	8		.043	.011	.28	.034	.035	.035		.060	5.6	1.5	.019	14	.23		.052	.030		.0017	.063	.15	74.	1.0	2.5	18	.46	.18
ıre Rate - λ _g (Failures/10 ⁶	g	88		.049	.013	.32	.039	.040	.039		990:	8.9	2.1	.027	.19	ઇ		.072	.034		.0017	690	.16	.64	5.	3.9	.20	.63	.23
Failure	G _F	8		.028	.0075	19	.022	.023	.024		.040	2.8	92.	9600	.068	Ξ.		.026	.020		.0011	.042	660.	24	5.	1.3	.12	.23	.091
Generic Failu	Env.→ GB	T _J (°C) → 50		.0036	.00094	.023	.0028	.0029	.0033		.0056	.86	.31	.004	.028	.047		.012	.0025		.00015	.0057	.014	660.	11.	.42	.016	.094	.045
	Dod Time		DIODES	General Purpose Analog	Switching	Fast Recovery Pwr. Rectifier	Power Rectifier/ Schottky Pwr.	Transient Suppressor/Varistor	Voltage Ref/Reg. (Avalanche	and Zener)	Current Regulator	Si Impatt (f < 35 GHz)	Gunn/Bulk Effect	Tunnel and Back	NIA	Schottky Barrier and Point	Contact (200 MHz s 1 s 35 GHz)	Varactor	Thyristor/SCR	TRANSISTORS	NPN/PNP (1 < 200 MHz)	Power NPN/PNP (f < 200 MHz)	Si FET (1 s 400 MHz)	Si FET (f > 400 MHz)	GaAs FET (P < 100 mW)	GaAs FET (P≥100 mW)	Unijunction	RF, Low Noise (1 > 200 MHz, P < 1W)	RF. Power (P≥1W)
	Section	*		6.1	6.1	6.1	6.1	6.1	6.1		6.1	6.2	6.2	6.2	6.2	6.2		6.2	6.10		6.3	6.3	6.4	6.9	6.8	6.8	6.5	9.9	6.7

	Generic Fal	lure Rate	e - λg	(Failures/	10 ⁶ Hoւ	ırs) for	Discrete	Semico	nductors	(cont'd	•			
Part Type	Env.→ GB	G _F	G _M	NS	N	Aıc	AIF	ŞÇ	AUF	ARW	Ş	MF	Σ	ۍ
	T _J (°C)→ 50	8	65	9	8	75	75	86	%	75	8	65	75	8
OPTO-ELECTRONICS														
Photodetector	.011	.029	13	.074	.20	.084	.13	.17	.23	36	.0057	.15	5.	9.9
Opto-Isolator	.027	070.	£.	.17	.47	.20	.30	.42	.56	.85	.013	.35	1.2	9
Emitter	.00047	.0012	.0056	.0031	.0084	.0035	.0053	.0074	8600.	.015	.00024	.0063	.021	.28
Alphanumeric Display	.0062	.016	.073	.040	Ξ.	.046	690	960.	.13	.20	.0031	.082	.28	3.6
Laser Diode, GaAs/Al GaAs	5.1	16	78	39	120	58	98	88	110	240	5.6	87	350	3600
Laser Diode, In GaAs/In GaAsP	0.6	58	135	69	500	100	150	150	200	400	4.5	150	009	6200
TUBES	See		(Includes	. Receivers,	CRTs, Crc	ss Field A	nplifiers, K	lystrons, T	WTs, Magn	etrons)				
LASERS	See	Section	80											
	Part Type OPTO-ELECTRONICS Photodetector Opto-Isolator Emitter Alphanumeric Display Laser Diode, GaAs/Al GaAs Laser Diode, In GaAs/In GaAsP TUBES LASERS	Part Type ECTRONICS ector ator ator heric Display de, GaAs/Al GaAs de, in GaAs/In	Part Type ECTRONICS ector ator ator heric Display de, GaAs/Al GaAs de, in GaAs/In	Part Type ECTRONICS ector ator ator heric Display de, GaAs/Al GaAs de, in GaAs/In	Part Type ECTRONICS ector ator ator heric Display de, GaAs/Al GaAs de, in GaAs/In	Part Type ECTRONICS ector ator ator heric Display de, GaAs/Al GaAs de, in GaAs/In	Part Type ECTRONICS ector ator ator heric Display de, GaAs/Al GaAs de, in GaAs/In	Part Type ECTRONICS ector ator ator heric Display de, GaAs/Al GaAs de, in GaAs/In	Part Type ECTRONICS ector ator ator heric Display de, GaAs/Al GaAs de, in GaAs/In	Part Type ECTRONICS ector ator ator heric Display de, GaAs/Al GaAs de, in GaAs/In	Part Type ECTRONICS ector ator ator heric Display de, GaAs/Al GaAs de, in GaAs/In	Generic Fallure Rate - λg (Fallures/10 ^o Hours) for Discrete Semiconductors (cont'd) Part Type Env.→ GB GF GM NS NU A _{IC} A _{IF} A _{UC} A _{UF} A _{FW} ECTRONICS 1J (*C)→ 50 60 65 60 65 75 75 90 90 75 ECTRONICS .011 .029 .13 .074 .20 .084 .13 .17 .23 .36 ector .011 .029 .13 .074 .20 .084 .13 .17 .23 .36 .85 ator .027 .070 .31 .17 .47 .20 .30 .42 .56 .85 ator .062 .064 .063 .003 .004 .11 .046 .069 .096 .13 .20 ade, In GaAs/In .062 .016 .073 .040 .11 .046 .069 .096 .13 .10 .10 .10 .10	Ceneric Failure Rate - Ag (Failures/10 ^o Hours) for Discrete Semiconductors (cont'd) Part Type Env.→ GB GF GM NS NJ AIC AIF AUC AUF ARW SF ECTRONICS ECTRONICS ector .011 .029 .13 .074 .20 .084 .13 .17 .23 .36 .0057 ator .027 .070 .31 .17 .47 .20 .30 .42 .56 .85 .013 ator .027 .070 .31 .17 .47 .20 .30 .42 .56 .85 .013 ade, GaAs/Al GaAs .0062 .0031 .0084 .005 .0053 <td>Fact Type Env.→ GB GF GA NS NJ AIC AIF AUC AUF AFM SF MF ECTRONICS TJ (°C)→ 50 60 65 60 65 75 75 90 90 75 50 65 ECTRONICS TJ (°C)→ 50 60 65 60 65 75 75 90 90 75 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 75 75 90 90 75 65 65 65 65 65 65 65 65 65 75</td>	Fact Type Env.→ GB GF GA NS NJ AIC AIF AUC AUF AFM SF MF ECTRONICS TJ (°C)→ 50 60 65 60 65 75 75 90 90 75 50 65 ECTRONICS TJ (°C)→ 50 60 65 60 65 75 75 90 90 75 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 75 75 90 90 75 65 65 65 65 65 65 65 65 65 75

	Discr	Discrete Semiconductor Quality Factors - $\pi_{\mathbf{Q}}$	actor Quality	Factors - TQ		
Section Number	Part Types	JANTXV	JANTX	JAN	Lower	Plastic
6.1, 6.3, 6.4, 6.5, 6.10, 6.11, 6.12	Non-RF Devices/ Opto-Electronics*	02'	1.0	2.4	5,5	8.0
6.2	High Freq Diodes	.50	1.0	5.0	25	20
6.2	Schottky Diodes	.50	1.0	1.8	2.5	;
6.6, 6.7, 6.8, 6.9	RF Transistors	.50	1.0	5.0	5.0	-
6.13	*Laser Diodes	E Q ∥ ∥ ∥ ⊢ ⊢ ⊷	π _Q = 1.0 Hermetic Package = 1.0 Nonhermetic with Facet Coating = 3.3 Nonhermetic without Facet Coating	kage with Facet Coati without Facet Co	ng vating	

			Generic		Failure Rate,	λg (Failt	(Failure/10 ⁵	Hours) For Resistors (Section 9.1)	For Resi	stors (S	ection 9	Ē.					
9	Style	MIL-R.	Env. → GB	g.	[©]	S _N	ح	γC	AIF	ŞÇ Ç	Ą	ARW	SF	Μ̈́	ž	لی	
<u> </u>			T _A (°C) → 30	5	45	40	45	22	22	92	2	52	සි	42	22	40	
	HCH HCH	39008	.0022	.011	.051	.034	.13	.071	160.	.17	.23	.25	.0011	.12	.34	4.9	
	8	=	.0022	.011	.051	.034	.13	.071	.091	.17	.23	.25	.001	.12	8.	4.9	
-	5	39017	.0037	910.	.07	.05	.18	80.	Ξ.	.16	.22	.29	.0018	.16	40	7.0	
D	쿈	22684	.0037	.016	.07	.05	.18	80.	Ξ.	91.	.22	.29	.0018	.16	4.	7.0	
or N)	A.	55182	.0037	910.	70.	.05	.18	80.	Ŧ.	.16	.22	.29	.0018	.16	.40	7.0	
	₹	55342	.0037	.016	.07	.05	.18	80:	Ŧ.	91.	.22	.29	.0018	91.	4.	7.0	
	₹	10509	.0037	.016	.07	90.	.18	80.	Ŧ.	.16	.22	.29	.0018	91.	.40	7.0	
	æ	11804	.010	.041	.16	.12	.43	.18	.24	.32	.44	.65	.0051	.38	68.	18	
	22	83401	.0016	.0084	.038	.025	.10	.053	990.	12	.17	.19	.00082	.088	.26	3.6	_
ccurate	 FB	39005	.0024	010.	.044	.031	- -	.054	690	Ŧ.	.15	.19	.0012	10	.26	4.5	
ccurate	#	93	.0024	010.	.044	.031	Ŧ.	.054	690	Ŧ.	.15	.19	.0012	.10	.26	4.5	
ower	FWH	39007	.0085	.038	.16	Ŧ,	.41	.19	.25	.38	.52	89:	.0043	.36	Ą.	16	
ower	Æ	56	.0085	.038	91.	Ŧ.	14.	.19	.25	.38	.52	99.	.0043	.36	8 .	16	
ower,	Æ	39009	.016	.070	.29	.21	77.	.36	.46	.71	96.	1.3	.0080	.68	1.8	30	
ower,	끭	18546	.016	070	53	.21	11.	.3 6	.46	۲۲.	86:	1.3	0800	89:	1.8	8	
unted	Æ	23648	.0014	.0058	.023	.017	.061	.026	.033	.045	.062	160.	7000.	.054	.13	2.5	
ariable	H.	39015	.0024	.010	.044	.031	.12	.054	690	Ξ.	.15	.19	.0012	.10	.26	4.5	
ariable	듄	27208	.0024	.010	.044	.031	1.	.054	690	÷.	.15	.19	.0012	.10	.26	4.5	
ariable,	Æ	12934	.0024	010.	.044	.031	.12	.054	690	Ξ.	.15	.19	.0012	.10	.26	4.5	
ariable,	¥	19	.0026	.013	.059	760.	.15	.083	Ŧ.	6.	•	•	.0013		•	•	
on ariable,	¥	39002	.0026	.013	.059	760.	.15	.083	Ŧ.	1 .	•	•	.0013	•	•	•	AP
ion ariable,	윤	22	.0024	010	.044	.031	.12	.054	690	Ŧ.	.15	19	.0012	.10	.26	4.5	PEI
*	E.	39035	.0037	.016	990.	.048	18	.083	Ŧ,	.16	.22	.29	.0018	91.	.40	7.0	NDI
·	2	22097	.0037	.016	.068	.048	6	.083	Ę	91.	.22	.29	.0018	.16	.40	7.0	X
Variable	≩	98	.0037	.016	.068	.048	.18	.083	F .	91.	.22	.29	.0018	91.	4.	7.0	<u>A:</u>
ri	æ	39023	.040	.020	.091	.061	.24	.13	.16	93	.42	.45	.0020	.21	.62	8.7	P
ecision	RVC	23285	.040	.020	160.	.061	.24	.13	.16	.30	.42	.45	.0020	.21	.62	8.7	ART
· Not P TA = De	dormally ustault Corr Pwr. dissi	Not Normally used in this Environment T_A = Default Component Ambient Temper Default Pwr. dissination 5 watts assumed	• Not Normally used in this Environment I _A = Default Component Ambient Temperature (°C) Default Pwr. dissipation 5 wants assumed for all categories except RD. RWR. RW. RW. RW. R. RW. R. R. R. R. A. A. Watts.	(°C) cateoories	except BD	BWR RW	BER and	RF Styles	BD. RWR	BW: 8 w	alls. BER	and BE: 40	watts				s co
				, ['			Established Reliability Styles	Reliability	Styles								JNT
				Quality	<u>}</u>	S	۳	4		≥	MIL-SPEC		Lower				-

Wirewound, Power, Chassis Mounted Wirewound, Power, Chassis Mounted

Wirewound, Power Wirewound, Power

Wirewound, Accurate Wirewound, Accurate

Film, Network

Film, Power

틆

Wirewound, Variable Wirewound, Variable

Thermistor

Nonwirewound,
Variable Precision
Film, Variable

Norwirewound, Variable Norwirewound, Variable Composition, Variable

10 10

MIL-SPEC 3.0

≥|2

Established Reliability Styles
R P
.10 .30

တ

Quality ō

Film, RN (R, C or N)

Film, Insulated Film, Insulated

Composition Composition

Part Type

Film, Chip

Semiprecision Wirewound, Variable, Semiprecision Wirewound, Variable,

Wirewound, Variable, Wirewound, Variable,

Precision

Power

NOTES:

କ୍ର ଚ

			Сепе	Generic Failure Rate,	e Hate,	λg (railures/10°		Hours) 1	or capa	Hours) for Capacitors (Section 10.1)	ection it					
Dort Two	Chylo	ζ 2	Env.→ GB	g.	™	s S	z	A _{IC}	AIF	P CC	₽	AHW.	ռբ Մ	≱ :	Σ	ک
Dielectric	Style	י שור	T _A (°C)→ 30	5	45	40	45	55	55	20	02	55	30	45	55	04
Paper, By-Pass	ზ	25	.00051	.0061	.013	.0043	.010	3600.	.012	.025	.030	.032	.00025	.013	.039	.35
Paper, By-Pass	క	12889	.00051	.0061	.013	.0043	.010	.0095	.012	.025	.030	.032	.00025	.013	.039	.35
Paper/Plastic, Feed- through	CZ, CZR	11693	.00051	1900:	.013	.0043	.010	9600.	.012	.025	.030	.032	.00025	.013	.039	.35
Paper/Plastic Film	CO, COR	19978	.00070	.0084	.018	6500.	.014	.013	910.	.034	.04	.043	.00035	.018	.054	.48
Metallized Plastic/ Plastic	8	18312	.00051	.0061	.013	.0043	.010	3600.	.012	.025	.030	.032	.00025	.013	.039	.35
Metallized Paper/Plastic	GH.	39022	02000.	.0084	.018	.0059	.014	.013	.016	.034	.041	.043	.00035	910.	.054	.48
Metallized Paper/Plastic	e E	55514	.00070	.0084	.018	.0059	.014	.013	.016	.034	.041	.043	.00035	.018	.054	.48
Metallized Plastic	85	83421	00000.	.0084	.018	.0059	.014	.013	.016	.034	.041	.043	.00035	.018	.054	.48
MICA (Dipped)	8	'n	.00057	.0088	.022	.0062	.016	910.	.024	690	.082	.064	.00029	.022	.080	.50
MICA (Dipped or Molded)	S. S.	39001	.00057	.0088	.022	.0062	.016	.019	.024	690	.082	.064	.00029	.022	.080	.50
MICA (Button)	8	10950	.00057	.0088	.022	.0062	.016	.019	.024	690	.082	.064	.00029	.022	.080	.50
Glass	CYR	23269	.0010	.016	.039	.011	.029	.034	.043	.12	.15	÷.	.00051	.039	14	06:
Glass	ઠે	11272	.0010	.016	.039	.011	.029	.034	.043	.12	.15	Ξ.	.00051	.039	4.	06:
Ceramic (Gen. Purpose)	ŏ	11015	.0017	.026	.064	.018	.048	.057	.071	.20	.24	.19	98000	.064	.24	1.5
Ceramic (Gen. Purpose)	Š	39014	.0017	.026	.064	.018	.048	.057	.071	.20	.24	.19	98000	.064	.24	1.5
Ceramic (Temp. Comp.)	00,00B	8	.0017	.026	.064	.018	.048	.057	.071	.20	.24	.19	98000	.064	.24	1.5
Ceramic Chip	80	55681	.0035	.053	.13	.037	860.	.12	.14	.41	.49	.38	.0017	.13	.48	3.0
Tantalum, Solid	SS	39003	.0014	.017	.037	.012	.027	.026	.032	.068	.082	.087	.00070	.037	Ξ.	96.
Tantalum, Chip	CWR	55365	.00014	.0016	9600.	.001	.0027	.0025	.0031	9900	6200.	.0084	.000068	9600	.010	.093
Tantalum, Non-Solid	G.B.	39006	.0022	.026	.057	.018	.042	.040	.050	Ξ.	.13	.13	.0011	.057	.17	1.5
Tantalum, Non-Solid	ರ	3962	.0022	.026	.057	.018	.042	.040	.050	Ŧ.	.13	.13	.0011	.057	.17	5.5
Tantalum, Non-Solid	CR.	83200	.0022	.026	.057	.018	.042	.040	.050	÷.	.13	.13	.0011	.057	.17	1.5
Aluminum Oxide	CU, CUR	39018	.0013	.019	.047	.014	.036	.042	.052	.15	.18	4.	.00063	.047	.17	1.
Aluminum Dry	쁑	62	.0013	.019	.047	.014	.036	.042	.052	.15	.18	41.	.00063	.047	.17	-
Variable, Ceramic	ઠ	8	.0055	990	4.	.046	Ξ.	.10	.13	.27	.32	.34	.0027	4.	.45	3.8
Variable, Piston	8	14409	.0047	.073	.18	.051	.13	.16	.20	.57	.68	.53	.0024	.18	99.	4.1
Variable, Air Trimmer	ь	85	.0000057	.000087	.00021	.000061	.00016	.00019	.00024	89000	.00081	.00063	.0000028	.00021	62000	.0050
Variable, Vacuum	90	23183	.0042	.050	=	.035	.082	710.	760.	.20	.24	.26	.0021	=	.32	2.9

^{1) *} Not Normally used in this Environment 2) $T_{\pmb{A}}=$ Default Component Ambient Temperature (°C) 3) Voltage stress = .4, $\pi_{SR}=$ 1

Assumed capacitance (µF): CP, CA, CZ, CZR, CQ, CQR, CH, CHR, CFR, CRH: 3.0, CM, CMR, CB: 0.003; CYR, CY, CK, CKR, CC, CCR, CDR: 20; CSR: 150; CWR: 50; CLR, CL, CRL, CL, CRL: 1000; CU, CUR, CE: 6000; CV, PC, CT, CG: 0.00006

Quality ⁷ Q	o 100:	o 10.	Established S, B .030	Reliability R .10	Styles P .30	∑ 0.	L 1.5	MIL-SPEC 3.0	Lower 10
					֡				

APPENDIX	Δ.	PARTS	COUNT

	Ğ	eneric Fai	Generic Failure Rate, λg		ဖွ	∵	for Inductive, Electromechanical	live, Elec	ctromech	I	and Miscellaneous	Haneous				
Cortion	Part Type	Ž	Env.→ GB	,	ტ W	s S	ž	A _{IC}	AIF	Ş	Ą	AHW	S,	ŭ. ¥	Σď	ۍ
- Aeciloi	rait iybe		T _A (°C)→30	40	45	40	45	55	55	70	20	55	30	45	55	Q
	INDUCTIVE DEVICES	3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9	0000		9	1100		or oo	0000	000	70000	1000	000	Ş
= ;	I ransformer, Switching	1-21038	19000.	2400	0600.	. cc.	ZIO:	1000) ooo	0,00.	380	020.	15000	300	830.	? <
= ;	Transformer, Flyback	1.07	9000	3 5		550.	- 0	ş, ç	<u> </u>	17	8 8		0075	260.	, K	} ç
= ;	Talisionnel, Addio	, C	5 5	2 6	; ;	8 8	9 -		. 4		; ;	; ,	900	į	: c	: 4
= ;	transformer, Fower	1-5/	eco.	ئ و	, ,	ن ا	<u>-</u> -	ŧ.,	ς. Τ	9. •	? ?	- 4	9 2	3 6	, u	3 6
- 5	Coil Fixed Inductor or Choke	0-15305	91.	95. CC100	0.00	00. 81000	00063	2.1000	00036	00037	00047	0011	0000	00051	0.0015	200
<u> </u>		C-39010														
11.2	Coil, Variable Inductor	C-15305	.00005	.00037	.00079	.00031	.0010	44000	.00059	.00061	92000.	.00	.00003	.00085	.0025	(3)
	ROTATING DEVICES							:	ł	. :	:	:				,
12.1	Motors, General		6.9	8.9	8.3	8.9	8.3	13	13	ଚ	ଛ	13	6.9	•	•	•
12.1	Sensor Motor		27	27	8	27	83	25	25	1.26+02	1.20+02	25	27	8	않	22
12.1	Servo Motor		5.4	5.4	6.5	5.4	6.5	9	2	ឌ	ឌ	유	5.4	6.5	9	5.4
12.1	Stepper Motor		1.2	1.2	4.1	1.2	4.	2.3	2.3	5.3	5.3	2.3	1.2	4.1	2.3	5.
12.2	Synchros		.031	.071	74.	.25	.70	19	.28		1 .	<u>-</u>	.016	Ż	1.7	24
12.2	Resolvers		047	=	02	.37	1.0	78	.43	1.7	5.6	1.8	.023	8 .	5.6	•
!	EL APSED TIME METERS				:											
19.3	ETM-AC		10	20	120	2	180	20	8	160	250	560	5.0	140	380	•
10.9	ETM-Invertor Driver		ŧ	S	180	105	270	75	120	240	375	390	7.5	210	570	•
13.3	ETM-Commutator DC		5 4	8 8	80	280	720	200	320	8 9	900	1040	8	260	1520	•
	BELAYS															
40	Google Burness (Bel Arm)		970	5	<u>-</u>	2	9	9	11	6.	14	0	025	1.7	5.7	•
2 5	Consisting (But Arm.)		6.00	<u>,</u> 6		8 8	. c	3 6	. 4	. c	. c	2.0	940	. K	; =	•
2 5	Der Dan Dan Arm.)		660.	i t	- 6	60		i 5	2 8	; -	- 1	2.4	020		. œ	•
2 9	Uly rided		600.	<u>.</u>	, .	9 9	4 F	7 0	ğ. +		- °		8 6		3 :	•
2	I nemial bi-metal		660.	S, S	- 0		÷ ;	¥ 8	<u>.</u> t	O 0	0 7	, c	5. S	5 -	- 4	
13.1	Magnetic Latching, (Bal.		840.	7	9 :	S.	F:	Si Si	,		₹. -	ر ن		<u>:</u>	ò	
13.1	Contactor, High Current		.049	.12	1.0	99	1.9	99.	11.	1.3	4 .	3.9	.025	1.7	2.5	•
	(Solenoid)															
13.2	Solid State, All		.029	780	.35	.17	.49	.35	.55	19:	.93	.67	.012	85	96.	17
	SWITCHES	See 14.1														
14.1	Dual In-line Package		.00012	90000	.0022	96000	.0035	.0012	.0022	.0016	.0026	.0055	90000	.0030	.0080	.14
1.4	Limit		4.3		11	ਲ	1.20+02	43	77	8	86	2.08+02	5.2	1.16+02	2.96+02	5.26+03
-	Microwave		1.7		3	7	49	17		81	£ :	20	385		1.18+02	2.00+03
<u>+</u>	Pushbutton		.10		1.8	8.	5.9	0.	6 .	. .	2.5	9.	.050	5.5	6.7	1.26+02
1.4	Reed		.0010		.018	.0080	.029	.0100	.018	.013	.022	.046	.00050	.025	790.	7.
14.1	Rocker		.023		4 .	.18	.67	.23	4 .	.30	25.	- -	.012	.57	1.5	88
14.1	Rotary		Ξ.		2.0	.88	3.2	- -	5.0	4.4	2.4	5.1	.055	2.8	7.4	1.30+02
7.7	Sensitive		.49		8.8	3.9	1	4.9	8.8	6.4	=	ន	.25	7	8	5.96+02
14.1	Thermal		.031		.56	.25	90	.3 .	.56	.40	89.	4.	.015	11.	2.1	37
14.1	Thumbwheel		.18		3.2	1.4	5.2	1.8	3.5	2.3	0.4	8.3	060	4.5	5	2.28+02
14.1	Toggle		01		1.8	.80	2.9	1.0	1 .8	1.3	2.2	4.6	.050	2.5	6.7	1.28+02
14.2	Circuit Breaker, All		89.		10	5.4	48	4.8	6.1	7.5	8.5	3	ģ	17	45	•
	CONNECTORS			1												
15.1	Circular		.001	.0013	.01	.0065	.018	.0049	.0082	.016	.025	.031	.00055	.014	.04	4 9.
15.1	PCB Card Edge		.044	.052	.45	56	.73	.20	.33	.65	86:	1.3	.022	.56	6 .	8
15.1	Hexagonal		.16	.19	1.7	76:	2.7	.74	1.2	2.5	3.7	4.7	.082	2.1	6.7	5 6
15.1	Rack and Panel		.023	.027	.24	14	88	.10	.17	.3 4	.52	99.	.011	8.	.93	5
15.1	Rectangular		.050	090	.52	30	84	.23	38	.75	1.	4.1	.025	.65	5.0	83
15.1	RF Coaxial		.00045	.00053	.0046	.0027	.0075	.0020	.0034	7900.	.0100	.013	.00022	.0058	.018	.28
15.1	Telephone		.0082	7600.	.085	.049	14	.037	.062	.12	18	83.	.004	Ξ.	.33	4.8
15.2	IC Sockets (DIP, SIP, PGA)		.0035	.011	.049	.021	.063	.028	.042	.039	.046	.088	.0018	.049	.13	2.3

	P	PE	NI)I	X	A	:	-	<u> </u>	۱F	T	S	C	C	U	N.	T		_				_	_			_
	ي	40	=	;	F.		.55	620	Ξ	.0063	.0029	050.	620	۲	88		Α/N	¥ Z	16	8	350		5.6	7	35	2.3	
	Σ	55	.60	;	Γ.		.03	.001	.0062	90000	.00016	.0029	7100.	4.1	1.5		N/A	N/A	1.0	ಜ	11		.33	1.8	4.1	.21	
	M	45	.22	;	ί.		.012	.00063	.0023	.00013	6.18-05	.001	.00062	1.5	.56		5.4	9.5	.42	16	51		.15	2	1.9	10	
Parts	SF	30	.01	2000	6200.		.00065	3.5e-05	.00013	7.59-06	3.40-06	6.09-05	3.59-05	.085	.031		0.099	0.17	.016	2.7	9.0		.018	960'	.22	600	
(Failures/10 ⁶ Hours) for Inductive, Electromechanical and Miscellaneous Parts	ARW	55	.42	4	D. 1		.021	.001	.0042	.00024	.0001	.0019	.001	2.7	66.		5.4	9.5	.74	19	8		.24	1.3	3.0	.16	
d Miscel	AUF	20	.62	40	33		.010	95000.	.0021	.00012	5.48-05	96000	.00055	4 .	.50		9.9	=	90	ន	11		.29	9.	3.5	.18	
anical an	₽	20	.36	ų	65		8200.	.00042	.0016	9.09-05	4.16-05	.00072	.00041	1.0	.37		5.5	8.9	.70	19	\$		2 4	1.3	3.0	.15	
tromeche	A _{IF}	55	.18	•	0.1		.0078	.00042	9100.	9.09-05	4.18-05	.00072	.00041	1.0	.37		3.8	6.4	.54	16	5		.20	- -	2.4	.12	
ive, Elec	AIC	55	۲.	4	0.1		.0052	.00028	0100	6.00-05	2.7e-05	.00048	.00028	89.	.25		2.5	4.3	.38	16	51		.15	%	1.9	060'	
or Induct	z ⊃	45	.29	5	42		410.	.0007	.0029	0.00017	7.59-05	.00	92000.	1,9	.68		3.2	5.4	.51	16	51		8	Ξ.	2.4	.11	
Hours) fa	NS	40	ξ.	•	1.8		.0052	.00028	.0010	6.09 - 05	2.7e-05	.00048	.00028	99.	.25		<u>:</u>	4.8	.19	12	88		.088	.48	1.1	.050	
res/10 ⁶	GM	45	.16	•	1.8		.0091	.00049	.0018	1.08-04	4.89-05	.00084	.00048	1.2	.43		2.3	3.8	.32	12	38		.13	.72	1.6	.080	
ر (Fallu	G _F	40	.045	ţ	٠٤٠		.0026	.00014	.00052	3.00-05	1.40-05	.00024	41000	ģ	.12		0.36	0.61	960.	7.8	88		<u>\$</u>	.24	2 .	.020	
• • •	Env.→ G _B	TA (°C)→ 30	.022	1000	6200.		.0013	7.09-05	.00026	1.5e-05	6.89-06	.00012	6.99-05	.17	.062		0.09	0.15	.032	3.9	13		.022	.12	.27	.010	
Generic Failure Rate,	3								-		-				•		M-10304	M-10304	C-3098		_		F-15733	F-15733	F-18327		
0	Dart Type		Plated Through Hole Circuit	Boards	Surface Mount Lech. Circuit Boards	SINGLE CONNECTIONS	Hand Solder, w/o Wrapping	Hand Solder, w/Wrapping	Crimp	Weld	Solderless Wrap	Clip Termination	Reflow Solder	Spring Contact	Terminal Block	METERS, PANEL	DC Ammeter or Voltmeter	AC Ammeter or Voltmeter	Quartz Crystals	Lamps, Incandescent, AC	Lamps, Incandescent, DC	ELECTRONIC FILTERS	Ceramic-Ferrite	Discrete LC Comp.	Discrete LC & Crystal Comp.	FUSES	
	Corton	*	16.1	_	16.2		17.1	17.1	_		17.1	17.1	17.1	17.1	17.1		18.1	18.1	19.1	20.1	20.1		21.1	21.1	21.1	22.1	

₽ 8 NOTES:

 T_{A} = Default Component Amblent Temperature (°C), π_{T} based on T_{A} shown.

Relay assumptions: Rated Temp. = 125° C, SPST, Resistive Load, S = .5, 10 cycles/hour. Switch assumptions: SPST; Circuit breakers: DPST, not used as a switch. 8 4 G G K

Motor assumptions: 10 yr. (87600 hours) design life assumed; Synchros/Resolvers: Size 10-16, 3 brushes; ETMs: π_T = .5.

Connector assumptions: $\pi_K = 1$; Sockets: 40 pins.

Plated through hole circuit board assumptions: 1000 wave solder joints, 3 planes, no hand soldering; SMT circuit board design assumptions are same as those shown in Section 16.2 exampte using the default ∆T values shown In Section 16.2.

Quartz crystal assumptions: 50 MHz Lamp assumptions: utilization rate = .5, 28 volt rating.

	Non-MIL	3.0	A/N	2.9	1.9		2.0	8.4	2.0	1.0	2.0	N/A	N/A	3.4	2.1	N/A	2.9	N/A
	MIL-SPEC	1.0	N/A	1.5	1.0		1.0	1.0	1.0	ю.	1.0	N/A	N/A	1.0	1.0	N/A	1.0	N/A
on 11-22 Devices	Established Reliability	.25*	N/A	09.	N/A		N/A	N/A	N/A	N/A	N/A	N/A	A/A	N/A	N/A	N/A	N/A	N/A
$\pi_{\mathbf{Q}}$ Factor for Use with Section 11-22 Devices	Part Type	Inductive Devices	Rotating Devices	Relays, Mechanical	Relays, Solid State and Time Delay (Hybrid &	Solid State)	Switches, Toggle, Pushbutton, Sensitive	Circuit Breakers	Connectors	Connectors, Sockets	Plated Through Hole Circuit Boards	Surface Mount Tech. Circuit Boards	Connections	Meters, Panel	Quartz Crystals	Lamps, Incandescent	Electronic Filters	Fuses
	Section #	11.1, 11.2	12.1, 12.2, 12.3	13.1	13.2		14.1	14.2	15.1	15.2	16.1	16.2	17.1	18.1	19.1	20.1	21.1	22.1

* Category applies only to MIL-C-39010 Coils.

_	X A:	PAI		COU														
	Voltage Stress = .7, Metallurgically Bonded	Voltage Stress = .7, Metallurgically Bonded	Voltage Stress = .7, Metallurgically Bonded	Metallurgically Bonded Contacts Voltage Stress = .7, Metallurgically Bonded	Contacts Metallurgically Bonded Contacts	Metallurgically Bonded Contacts		Rated Power = 1000W		Multiplier Application Voltage Stress = .7, Rated Forward Current = 1 Amp	Voltage Stress = .5, Switching Application, Rated	Power = .5W Voltage Stress = .8, Linear Application, Rated	Power = 100W MOSFET, Small Signal Switching MosFET, Small Signal Switching	Low Application, 1 < f ≤ 10 GHz, Input and	Pulsed Application, 5 GHz, 1W Average Output	Yoltage Stress = .7, Rated Power = .5W	1 GHz, 100W, T ₁ = 130°C for all Environments,	Voltage Stress = .45, Gold Metallization, Pulsed Application, 20% Duty Factor, Input and Output Matching
							000	5.0		0.0	77.	5.5				77:		
							000	0.		2.5	02.	5.	.70	1.0	1.0		1.6	
	1.0	1.0	1.0	0.0	1.0	1.0		C	?									
ded with	.42	.42	4.	1.0	1.0	1.0		ç	?	15.	12.	54				98.		
ults provi														1.0	1.0		1.0	
All Defa																	.36	
	9600.	.00	.025	.003	.002	.0034	.22 1.8 0023	.0081	170	.0025	.00074	.00074	.012	.052	.13	.0083	80.	
MICROCIRCUTS	DIODES General Purpose Analog	Switching	Fast Recovery Power Rectifier	Transient Suppressor/Varistor Power Rectifier	Voltage Ref/Reg. (Avalanche &	Current Regulator	Si impati (≤ 35 GHz) Gunn/Bulk Effect Tunnel and Back	PIN Schottky Barrier and Point Contact	(200 MHz s frequency s 35 GHz)	Varactor Thyristor/SCR	TRANSISTORS NPN/PNP (f < 200 MHz)	Power NPN/PNP (f < 200 MHz)	Si FET (f ≤ 400 MHz) Si FET (f < 400 MHz)	GaAs FET (P < 100 mW)	GaAs FET (P≥100 mW)	Unijunction RF, Low Noise, Bipolar	(r > 200 MHz, P < 1W) RF, Power (P ≥ 1W)	
5.0	6.1	6.1	6.1	6.1	6.1	6.1	9 9 9	0.5	! (6.10	6.3	6.3	4.0	6.8	8.9	6.5 6.6	6.7	
_		MICROCIRCUITS All Defaults provided with $\lambda_{\rm g}$ Table DIODES General Purpose Analog .0038 .0038	MICROCIRCUITS All Defaults provided with $\lambda_{\rm g}$ Table DIODES General Purpose Analog .0038 .0038 .42 1.0 Switching	MICROCIRCUITS All Defaults provided with $\lambda_{\rm g}$ Table DIODES General Purpose Analog .0038 .001 Switching Fast Recovery Power Rectifier .025 All Defaults provided with $\lambda_{\rm g}$ Table .42 .10	MICROCIRCUITS DIODES General Purpose Analog Switching Transient Suppressor/Varistor Power Rectifier Constant Suppressor/Varistor Constant Suppressor/Varisto	MICROCIRCUITS All Defaults provided with λ _g Table DIODES General Purpose Analog .0038 .42 1.0 Switching Fast Recovery Power Rectifier .025 .0031 .0031 .0031 .0033 .42 1.0 Transient Suppressor/Varistor .0033 .42 1.0 Voltage Ref/Reg. (Avalanche & .002 .003 .002 .1.0 .1.0	MICROCIRCUITS All Defaults provided with λ _g Table DIODES General Purpose Analog .0038 .003 .42 1.0 Switching Fast Recovery Power Rectifier .025 .025 .42 1.0 Transient Suppressor/Varistor .0031 .00334 .1.0	MICROCIRCUITS	MICROCIRCUITS	MICROCIRCUITS All Defaults provided with λ _g Table DIODES General Purpose Analog Switching Fast Recovery Power Rectifier Transient Suppressor/Varistor Power Rectifier Voltage Ref/Reg. (Avalanche & .002	MICROCIRCUITS All Defaults provided with λ _g Table DIODES General Purpose Analog Switching Switching Switching Fast Recovery Power Rectifier Transient Suppressor/Varistor Voltage Ref/Reg. (Avalanche & .0031	MICROCIRCUITS	MICROCIRCUITS MICROCIRCUITS All Defaults provided with λ _g Table DIODES General Purpose Analog .0038 .42 1.0 Switching Fast Recovery Power Rectifier .0031 .001 .42 1.0 .44 1.0 .44 1.0 .45 1.0 .	MICROCIRCUITS	MICROCIRCUITS All Defaults provided with λg Table DIODES .0038 .42 1.0 General Purpose Analog .001 .42 1.0 Switching .001 .42 1.0 Fast Recovery Power Rectifier .025 .42 1.0 Power Rectifier .0031 .10 1.0 1.0 Power Rectifier .0034 1.0 1.0 1.0 Current Regulator .22 1.0 1.0 1.0 Si Impat Is 35 GHz) .36 .023 1.0 1.0 Tunnel and Back .0023 1.0 1.0 1.0 Schottky Barrier and Point Contact (200 MHz) .0023 .51 2.5 1.0 Varactor Varactor (200 MHz) .0025 .51 .70 .77 TRANSISTORS .00074 .54 1.5 5.5 B Power NPVPNP (t < 200 MHz)	MICROCIRCUITS DIODES General Purpose Analog Switching Fast Recovery Power Rectifier Voltage Ref/Reg. (Avalanche & .0034 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	DIODES General Purpose Analog Continue Continue	MICROCIRCUITS

		Default Parameters for Discrete Semiconductors	Parar	neters	for Dis	crete	Semico	nducto	Z)
Section #	Part Type	Ą	Ĩ	π M	πS	ည့	πA	띺	Comments
6.12 11.0 10.0 10.0 10.0 10.0 10.0 10.0 1	OPTO-ELECTRONICS Photodetector Opto-Isolator Emitter Alphanumeric Display Laser Diode, GaAs/Al GaAs	.0055 .013 .00023 .0030 3.23			1.0 (πp)		72.		Phototransistor Phototransistor, Single Device LED 7 Character Segment Display For Environments with T _J > 75°C, assume T _J = 75°C, Forward Peak Current = .5 Amps (n_i = .62),
6.13	Laser Diode, In/GaAs/In GaAsP	5,65			1.0 (π _P)		7.		Pr/Ps = .5 (π_p = 1) For Environments with T _J > 75°C, assume T _J = 75°C, Forward Peak Current = .5 Amps (π_i = .62), Pulsed Application, Duty Cycle = .6, Pr/Ps = .5 (π_p = 1)
								7	

APPENDIX B: VHSIC/VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

This appendix contains the detailed version of the VHSIC/VLSI CMOS model contained in Section 5.3. It is provided to allow more detailed device level design trade-offs to be accomplished for predominate failure modes and mechanisms exhibited in CMOS devices. Reference 30 should be consulted for a detailed derivation of this model.

VHSIC/VHSIC-LIKE FAILURE RATE MODEL

$$\lambda_{p}(t) = \lambda_{OX}(t) + \lambda_{MET}(t) + \lambda_{HC}(t) + \lambda_{CON}(t) + \lambda_{PAC} + \lambda_{ESD} + \lambda_{MIS}(t)$$

$$\lambda_{p}(t)$$
 = Predicted Failure Rate as a Function of Time

$$\lambda_{OX}(t)$$
 = Oxide Failure Rate

$$\lambda_{MET}(t)$$
 = Metallization Failure Rate

$$\lambda_{HC}(t)$$
 = Hot Carrier Failure Rate

$$\lambda_{CON}(t)$$
 = Contamination Failure Rate

$$\lambda_{PAC}$$
 = Package Failure Rate

$$\lambda_{ESD}$$
 = EOS/ESD Failure Rate

$$\lambda_{MIS}(t)$$
 = Miscellaneous Failure Rate

The equations for each of the above failure mechanism failure rates are as follows:

OXIDE FAILURE RATE EQUATION

$$\lambda_{\text{OX}} \left(\text{in F/10}^6 \right) = \frac{A A_{\text{TYPEOX}}}{A_{\text{R}}} \left(\frac{D_{0_{\text{OX}}}}{D_{\text{R}}} \right) \left[(.0788 \, \text{e}^{-7.7 \, \text{t_0}}) \left(A_{\text{T_{OX}}} \right) \left(\text{e}^{-7.7 \, \text{AT_{OX}} t} \right) \right.$$

$$\left. + \frac{.399}{(t + t_0) \sigma_{\text{OX}}} \exp \left(\frac{-.5}{\sigma_{\text{OX}}^2} \left(\ln (t + t_0) - \ln t_{50_{\text{OX}}} \right)^2 \right) \right]$$

APPENDIX B: VHSIC-VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

OXIDE FAILURE RATE EQUATION (CONTINUED)

$$A_R = .21 \text{ cm}^2$$

D₀ = Oxide Defect Density (If unknown, use
$$\left(\frac{X_0}{X_S}\right)^2$$
 where $X_0 = 2 \mu m$ and X_S is the feature size of the device)

$$D_R = 1 \text{ Defect/cm}^2$$

= (Actual Time of Test (in 10⁶ hrs.)) • (A_{Tox} (at junction screening temp.) (in °K))*

$$A_{T_{OX}} = \text{Temperature Acceleration Factor,} = \exp\left[\frac{-.3}{8.617 \times 10^{-5}} \left(\frac{1}{T_{J}} - \frac{1}{298}\right)\right]$$
(where $T_{J} = T_{C} + \theta_{JC}P$ (in °K))

$$A_{\text{Vox}} = e^{-192 \left(\frac{1}{E_{\text{OX}}} - \frac{1}{2.5}\right)}$$

E_{OX} = Maximum Power Supply Voltage V_{DD}, divided by the gate oxide thickness (in MV/cm)

$$t_{50_{OX}} = \frac{1.3 \times 10^{22} \text{ (QML)}}{AT_{OX} AV_{OX}} \text{ (in 10}^6 \text{ hrs.)}$$

(QML) = 2 if on QML, .5 if not.

 $\sigma_{\rm OX}$ = Sigma obtained from test data of oxide failures from the same or similar process. If not available, use a $\sigma_{\rm OX}$ value of 1.

t = time (in 10⁶ Hours)

APPENDIX B: VHSIC/VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

METAL FAILURE RATE EQUATION

$$\lambda_{\text{MET}} = \left[\frac{A A_{\text{TYPEMET}}}{A_{\text{R}}} \frac{D_{0 \text{MET}}}{D_{\text{R}}} (.00102 e^{-1.18 t_0}) (A_{T_{\text{MET}}}) (e^{-1.18 A_{T_{\text{MET}}}t}) \right] + \left[\frac{.399}{(t + t_0) \sigma_{\text{MET}}} exp \left(\frac{-.5}{\sigma_{\text{MET}}^2} \left(ln (t + t_0) - ln t_{50_{\text{MET}}} \right)^2 \right) \right]$$

A = Total Chip Area (in cm²)

A_{TYPE....} = .88 for Custom and Logic Devices, 1.12 for Memory and Gate Arrays

 $A_{\rm p} = .21 \, \text{cm}^2$

D_{0MET} = Metal Defect Density (If unknown use $(\frac{X_0}{X_S})^2$ where $X_0 = 2 \mu m$ and X_S is the feature size of the device)

 $D_{p} = 1 \text{ Defect/cm}^2$

A_{TAUET} = Temperature Acceleration Factor

 $= \exp\left[\frac{-.55}{8.617 \times 10^{-5}} \left(\frac{1}{T_{J}} - \frac{1}{298}\right)\right] \left(T_{J} = T_{CASE} + \theta_{JC}P \quad (in \, ^{\circ}K)\right)$

 t_0 = Effective Screening Time (in 10⁶ hrs.)

= A_{TMET} (at Screening Temp. (in °K)) * (Actual Screening Time (in 10⁶ hrs))

 $t_{50_{MET}} = (QML) \frac{.388 \cdot (Metal Type)}{J^2 A_{TMET}}$ (in 10⁶ hrs.)

(QML) = 2 if on QML, .5 if not.

Metal Type = 1 for Al, 37.5 for Al-Cu or for Al-Si-Cu

J = The mean absolute value of Metal Current Density (in 10⁶ Amps/cm²)

 σ_{MET} = sigma obtained from test data on electromigration failures from the same or a similar process. If this data is not available use σ_{MET} = 1.

APPENDIX B: VHSIC-VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

HOT CARRIER FAILURE RATE EQUATION

$$\lambda_{HC} = \frac{.399}{(t+t_0)\sigma_{HC}} \exp\left[\frac{-.5}{\sigma_{HC}^2} \left(\ln(t+t_0) - \ln t_{50} \right)^2 \right]$$

$$t_{50_{HC}} = \frac{(QML)3.74x10^{-5}}{A_{T_{HC}}} \left(\frac{l_{sub}}{l_d} \right)^{-2.5}$$

(QML) = 2 if on QML, .5 if not

$$A_{THC} = exp \left[\frac{.039}{8.617 \times 10^{-5}} \left(\frac{1}{T_J} - \frac{1}{298} \right) \right] \text{ (where } T_J = T_C + \theta_{JC} P \text{ (in °K))}$$

Id = Drain Current at Operating Temperature. If unknown use $I_d = 3.5 e^{-.00157} T_J$ (in °K) (mA)

I_{sub} = Substrate Current at Operating Temperature. If unknown use I_{sub} = .0058 e -.00689 T_J (in °K) (mA)

 σ_{HC} = sigma derived from test data, if not available use 1.

t₀ = A_{T_{HC}} (at Screening Temp.(in °K)) * (Test Duration in 10⁶ hours)

t = time (in 10^6 hrs.)

CONTAMINATION FAILURE RATE EQUATION

$$\lambda_{CON}$$
 = .000022 e -.0028 t₀ $A_{T_{CON}}$ e -.0028 $A_{T_{CON}}$ t

$$A_{TCON} = \exp\left[\frac{-1.0}{8.617 \times 10^{-5}} \left(\frac{1}{T_J} - \frac{1}{298}\right)\right] \text{ (where } T_J = T_C + \theta_{JC}P \text{ (in °K))}$$

t₀ = Effective Screening Time

= A_{Tcon} (at screening junction temperature (in °K)) • (actual screening time in 10⁶ hrs.)

APPENDIX B: VHSIC/VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

PACKAGE FAILURE RATE EQUATION

 $\lambda_{PAC} = (.0024 + 1.85 \times 10^{-5} \text{ (#Pins)}) \pi_{E} \pi_{Q} \pi_{PT} + \lambda_{PH}$

 π_{F} = See Section 5.10

 π_{O} = See Section 5.10

Package Type Factor (Π_{PT})

Package Type	Π_{PT}
DIP	1.0
Pin Grid Array	2.2
Chip Carrier (Surface Mount Technology)	4.7

 λ_{PH} = Package Hermeticity Factor

 λ_{PH} = 0 for Hermetic Packages

$$\lambda_{PH} = \frac{.399}{t\sigma_{PH}} exp \left[\frac{-.5}{\sigma_{PH}^2} \left(ln(t) - ln(t_{50PH}) \right)^2 \right]$$
 for plastic packages

$$t_{50}_{PH} = 86 \times 10^{-6} \exp \left[\frac{.2}{8.617 \times 10^{-5}} \left(\frac{1}{T_A} - \frac{1}{298} \right) \right] \exp \left[\frac{2.96}{RH_{EFF}} \right]$$

T_A = Ambient Temp. (in °K)

$$RH_{eff} = (DC)(RH) \left[e^{5230} \left(\frac{1}{T_J} - \frac{1}{T_A} \right) \right] + (1-DC)(RH) \text{ where } T_J = T_C + \theta_{JC}P \text{ (in °K)}$$
(for example, for 50% Relative Humidity, use RH = .50)

 $\sigma_{PH} = .74$

APPENDIX B: VHSIC-VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

EOS/ESD FAILURE RATE EQUATION

$$\lambda_{EOS} = \frac{-\ln (1 - .00057 e^{-.0002 V_{TH}})}{.00876}$$

V_{TH} = ESD Threshold of the device using a 100 pF, 1500 ohm discharge model

MISCELLANEOUS FAILURE RATE EQUATION

$$\lambda_{MIS} = (.01 e^{-2.2 t_0}) (A_{T_{MIS}}) (e^{-2.2 A_{T_{MIS}} t})$$

A_{TMIS} = Temperature Acceleration Factor

$$= \exp\left[\frac{-.423}{8.6317x10^{-5}} \left(\frac{1}{T_{J}} - \frac{1}{298}\right)\right]$$

where
$$T_J = T_C + \theta_{JC}P$$
 (in °K)

to = Effective Screening Time

= A_{TMIS} (at Screening Temp. (in °K)) * Actual Screening Time (in 10⁶ hours)

MIL-HDBK-217F RE - 9999970 0070891 8 -

MIL-HDBK-217F

APPENDIX C: BIBLIOGRAPHY

Publications listed with "AD" numbers may be obtained from:

National Technical Information Service 5285 Port Royal Road Springfield, VA 22151 (703) 487-4650

U.S. Defense Contractors may obtain copies from:

Defense Technical Information Center Cameron Station - FDA, Bldg. 5 Alexandria, VA 22304-6145 (703) 274-7633

Documents with AD number prefix with the letter "B" or with the suffix "L": These documents are in a "Limited Distribution" category. Contact the Defense Technical Information Center for ordering procedures.

Copies of MIL-STDS's, MIL-HDBK's, and specifications are available from:

Standardization Document Order Desk 700 Robins Ave. Building 4, Section D Philadelphia, PA 19111-5094 (215) 697-2667

The year of publication of the Rome Laboratory (RL) (formerly Rome Air Development Center (RADC)) documents is part of the RADC (or RL) number, e.g., RADC-TR-88-97 was published in 1988.

- 1. "Laser Reliability Prediction," RADC-TR-75-210, AD A016437.
- 2. "Reliability Model for Miniature Blower Motors Per MIL-B-23071B," RADC-TR-75-178, AD A013735.
- 3. "High Power Microwave Tube Reliability Study," FAA-RD-76-172, AD A0033612.
- 4. "Electric Motor Reliability Model," RADC-TR-77-408, AD A050179.
- "Development of Nonelectronic Part Cyclic Failure Rates." RADC-TR-77-417, AD A050678.

This study developed new failure rate models for relays, switches, and connectors.

6. "Passive Device Failure Rate Models for MIL-HDBK-217B," RADC-TR-77-432, AD A050180.

This study developed new failure rate models for resistors, capacitors and inductive devices.

- 7. "Quantification of Printed Circuit Board Connector Reliability," RADC-TR-77-433, AD A049980.
- 8. "Crimp Connection Reliability." RADC-TR-78-15, AD A050505.
- 9. "LSI/Microprocessor Reliability Prediction Model Development," RADC-TR-79-97, AD A068911.
- 10. "A Redundancy Notebook," RADC-TR-77-287, AD A050837.
- 11. "Revision of Environmental Factors for MIL-HDBK-217B," RADC-TR-80-299, AD A091837.

MIL-HDBK-217F RE ■ 9999970 0070892 T ■

MIL-HDBK-217F

APPENDIX C: BIBLIOGRAPHY

- 12. "Traveling Wave Tube Failure Rates," RADC-TR-80-288, AD A096055.
- 13. "Reliability Prediction Modeling of New Devices," RADC-TR-80-237, AD A090029.

This study developed failure rate models for magnetic bubble memories and charge-coupled memories.

- 14. "Failure Rates for Fiber Optic Assemblies," RADC-TR-80-322, AD A092315.
- "Printed Wiring Assembly and Interconnection Reliability," RADC-TR-81-318, AD A111214.

This study developed failure rate models for printed wiring assemblies, solderless wrap assemblies, wrapped and soldered assemblies and discrete wiring assemblies with electroless deposited plated through holes.

- 16. "Avionic Environmental Factors for MIL-HDBK-217," RADC-TR-81-374, AD B064430L.
- 17. "RADC Thermal Guide for Reliability Engineers," RADC-TR-82-172, AD A118839.
- 18. "Reliability Modeling of Critical Electronic Devices," RADC-TR-83-108, AD A135705.

This report developed failure rate prediction procedures for magnetrons, vidicions, cathode ray tubes, semiconductor lasers, helium-cadmium lasers, helium-neon lasers, Nd: YAG lasers, electronic filters, solid state relays, time delay relays (electronic hybrid), circuit breakers, I.C. Sockets, thumbwheel switches, electromagnetic meters, fuses, crystals, incandescent lamps, neon glow lamps and surface acoustic wave devices.

19. "Impact of Nonoperating Periods on Equipment Reliability," RADC-TR-85-91, AD A158843.

This study developed failure rate models for nonoperating periods.

20. "RADC Nonelectronic Reliability Notebook," RADC-TR-85-194, AD A163900.

This report contains failure rate data on mechanical and electromechanical parts.

21. "Reliability Prediction for Spacecraft," RADC-TR-85-229, AD A149551.

This study investigated the reliability performance histories of 300 Satellite vehicles and is the basis for the halving of all model π_{E} factors for MIL-HDBK-217E to MIL-HDKB-217E, Notice 1.

- 22. "Surface Mount Technology: A Reliability Review," 1986, Available from Reliability Analysis Center, PO Box 4700, Rome, NY 13440-8200, 800-526-4802.
- "Thermal Resistances of Joint Army Navy (JAN) Certified Microcircuit Packages," RADC-TR-86-97, AD B108417.
- 24. "Large Scale Memory Error Detection and Correction," RADC-TR-87-92, AD B117765L.

This study developed models to calculate memory system reliability for memories incorporating error detecting and correcting codes. For a summary of the study see 1989 IEEE Reliability and Maintainability Symposium Proceedings, page 197, "Accounting for Soft Errors in Memory Reliability Prediction."

 "Reliability Analysis of a Surface Mounted Package Using Finite Element Simulation," RADC-TR-87-177, AD A189488.

APPENDIX C: BIBLIOGRAPHY

- 26. "VHSIC Impact on System Reliability," RADC-TR-88-13, AD B122629.
- 27. "Reliability Assessment of Surface Mount Technology," RADC-TR-88-72, AD A193759.
- 28. "Reliability Prediction Models for Discrete Semiconductor Devices," RADC-TR-88-97, AD A200529.

This study developed new failure rate prediction models for GaAs Power FETS, Transient Suppressor Diodes, Infrared LEDs, Diode Array Displays and Current Regulator Diodes.

- 29. "Impact of Fiber Optics on System Reliability and Maintainability," RADC-TR-88-124, AD A201946.
- 30. "VHSIC/VHSIC Like Reliability Prediction Modeling," RADC-TR-89-171, AD A214601.

This study provides the basis for the VHSIC model appearing in MIL-HDBK-217F, Section 5.

"Reliability Assessment Using Finite Element Techniques," RADC-TR-89-281, AD A216907.

This study addresses surface mounted solder interconnections and microwire board's plated-through-hole (PTH) connections. The report gives a detailed account of the factors to be considered when performing an FEA and the procedure used to transfer the results to a reliability figure-of-merit.

32. "Reliability Analysis/Assessment of Advanced Technologies," RADC-TR-90-72, ADA 223647.

This study provides the basis for the revised microcircuit models (except VHSIC and Bubble Memories) appearing in MIL-HDBK-217F, Section 5.

- 33. "Improved Reliability Prediction Model for Field-Access Magnetic Bubble Devices," AFWAL-TR-81-1052.
- 34. "Reliability/Design Thermal Applications," MIL-HDBK-251.
- 35. "NASA Parts Application Handbook," MIL-HDBK-978-B (NASA).

 This handbook is a five volume series which discusses a full range of electrical, electronic and electromechanical component parts. It provides extensive detailed technical information for each component part such as: definitions, construction details, operating characteristics, derating, failure mechanisms, screening techniques, standard parts, environmental considerations, and circuit application.
- 36. "Nonelectronic Parts Reliability Data 1991," NPRD-91.

 This report contains field failure rate data on a variety of electrical, mechanical, electromechanical and microwave parts and assemblies (1400 different part types). It is available from the Reliability Analysis Center, PO Box 4700, Rome, NY 13440-8200, Phone: (315) 337-0900.
- 37. "Reliability Assessment of Critical Electronic Components," RL-TR-92-197, AD-A256996.

 This study is the basis for new or revised failure rate models in MIL-HDBK-217F, Notice 2, for the following device categories: resistors, capacitors, transformers, coils, motors, relays, switches, circuit breakers, connectors, printed circuit boards and surface mount technology.

APPENDIX C: BIBLIOGRAPHY

38. "Handbook of Reliability Prediction Procedures for Mechanical Equipment," NSWC-94/L07. This Handbook includes a methodology for nineteen basic mechanical components for evaluating a design for R&M that considers the material properties, operating environment and critical failure modes. It is available from the Carderock Division, Naval Surface Warfare Center, Bethesda, MD 20084-5000, Phone (301) 227-1694.

Custodians:

Army - CR Navy - EC Air Force - 17 Preparing Activity: Air Force - 17

Project No. RELI-0074

Review Activities:

Army - MI, AV, ER Navy - SH, AS, OS Air Force - 11, 13, 15, 19, 99

User Activities:

Army - AT, ME, GL Navy - CG, MC, YD, TD Air Force - 85

Document provided by IHS